110,476 research outputs found

    Stability of exponential bases on d- dimensional domains

    Full text link
    We find explicit stability bounds for exponential Riesz bases on domains of R^d. Our results generalize Kadec theorem and other stability theorems in the literature.Comment: We have discovered an error in Theorem 1.

    Rational Proofs with Multiple Provers

    Full text link
    Interactive proofs (IP) model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. IP protocols have applications in areas such as verifiable computation outsourcing, computation delegation, cloud computing. In these applications, the verifier may pay the prover based on the quality of his work. Rational interactive proofs (RIP), introduced by Azar and Micali (2012), are an interactive-proof system with payments, in which the prover is rational rather than untrustworthy---he may lie, but only to increase his payment. Rational proofs leverage the provers' rationality to obtain simple and efficient protocols. Azar and Micali show that RIP=IP(=PSAPCE). They leave the question of whether multiple provers are more powerful than a single prover for rational and classical proofs as an open problem. In this paper, we introduce multi-prover rational interactive proofs (MRIP). Here, a verifier cross-checks the provers' answers with each other and pays them according to the messages exchanged. The provers are cooperative and maximize their total expected payment if and only if the verifier learns the correct answer to the problem. We further refine the model of MRIP to incorporate utility gap, which is the loss in payment suffered by provers who mislead the verifier to the wrong answer. We define the class of MRIP protocols with constant, noticeable and negligible utility gaps. We give tight characterization for all three MRIP classes. We show that under standard complexity-theoretic assumptions, MRIP is more powerful than both RIP and MIP ; and this is true even the utility gap is required to be constant. Furthermore the full power of each MRIP class can be achieved using only two provers and three rounds. (A preliminary version of this paper appeared at ITCS 2016. This is the full version that contains new results.)Comment: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. ACM, 201

    Statistical uncertainty of eddy flux–based estimates of gross ecosystem carbon exchange at Howland Forest, Maine

    Get PDF
    We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest-atmosphere CO2fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However, separation of tower-based net ecosystem exchange (NEE) into its components (respiration losses and photosynthetic uptake) requires at least one application of a model, which is usually a regression model fitted to nighttime data and extrapolated for all daytime intervals. In addition, the existence of a significant amount of missing data in eddy flux time series requires a model for daytime NEE as well. Statistical approaches for analytically specifying prediction intervals associated with a regression require, among other things, constant variance of the data, normally distributed residuals, and linearizable regression models. Because the NEE data do not conform to these criteria, we used a Monte Carlo approach (bootstrapping) to quantify the statistical uncertainty of GEE estimates and present this uncertainty in the form of 90% prediction limits. We explore two examples of regression models for modeling respiration and daytime NEE: (1) a simple, physiologically based model from the literature and (2) a nonlinear regression model based on an artificial neural network. We find that uncertainty at the half-hourly timescale is generally on the order of the observations themselves (i.e., ∼100%) but is much less at annual timescales (∼10%). On the other hand, this small absolute uncertainty is commensurate with the interannual variability in estimated GEE. The largest uncertainty is associated with choice of model type, which raises basic questions about the relative roles of models and data

    Gaps between logs

    Full text link
    We calculate the limiting gap distribution for the fractional parts of log n, where n runs through all positive integers. By rescaling the sequence, the proof quickly reduces to an argument used by Barra and Gaspard in the context of level spacing statistics for quantum graphs. The key ingredient is Weyl equidistribution of irrational translations on multi-dimensional tori. Our results extend to logarithms with arbitrary base; we deduce explicit formulas when the base is transcendental or the r:th root of an integer. If the base is close to one, the gap distribution is close to the exponential distribution.Comment: 14 page

    Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization

    Get PDF
    In this paper, we consider the problem of sequentially optimizing a black-box function ff based on noisy samples and bandit feedback. We assume that ff is smooth in the sense of having a bounded norm in some reproducing kernel Hilbert space (RKHS), yielding a commonly-considered non-Bayesian form of Gaussian process bandit optimization. We provide algorithm-independent lower bounds on the simple regret, measuring the suboptimality of a single point reported after TT rounds, and on the cumulative regret, measuring the sum of regrets over the TT chosen points. For the isotropic squared-exponential kernel in dd dimensions, we find that an average simple regret of ϵ\epsilon requires T=Ω(1ϵ2(log1ϵ)d/2)T = \Omega\big(\frac{1}{\epsilon^2} (\log\frac{1}{\epsilon})^{d/2}\big), and the average cumulative regret is at least Ω(T(logT)d/2)\Omega\big( \sqrt{T(\log T)^{d/2}} \big), thus matching existing upper bounds up to the replacement of d/2d/2 by 2d+O(1)2d+O(1) in both cases. For the Mat\'ern-ν\nu kernel, we give analogous bounds of the form Ω((1ϵ)2+d/ν)\Omega\big( (\frac{1}{\epsilon})^{2+d/\nu}\big) and Ω(Tν+d2ν+d)\Omega\big( T^{\frac{\nu + d}{2\nu + d}} \big), and discuss the resulting gaps to the existing upper bounds.Comment: Appearing in COLT 2017. This version corrects a few minor mistakes in Table I, which summarizes the new and existing regret bound

    On quantum mean-field models and their quantum annealing

    Full text link
    This paper deals with fully-connected mean-field models of quantum spins with p-body ferromagnetic interactions and a transverse field. For p=2 this corresponds to the quantum Curie-Weiss model (a special case of the Lipkin-Meshkov-Glick model) which exhibits a second-order phase transition, while for p>2 the transition is first order. We provide a refined analytical description both of the static and of the dynamic properties of these models. In particular we obtain analytically the exponential rate of decay of the gap at the first-order transition. We also study the slow annealing from the pure transverse field to the pure ferromagnet (and vice versa) and discuss the effect of the first-order transition and of the spinodal limit of metastability on the residual excitation energy, both for finite and exponentially divergent annealing times. In the quantum computation perspective this quantity would assess the efficiency of the quantum adiabatic procedure as an approximation algorithm.Comment: 44 pages, 23 figure

    Infinite games with finite knowledge gaps

    Full text link
    Infinite games where several players seek to coordinate under imperfect information are deemed to be undecidable, unless the information is hierarchically ordered among the players. We identify a class of games for which joint winning strategies can be constructed effectively without restricting the direction of information flow. Instead, our condition requires that the players attain common knowledge about the actual state of the game over and over again along every play. We show that it is decidable whether a given game satisfies the condition, and prove tight complexity bounds for the strategy synthesis problem under ω\omega-regular winning conditions given by parity automata.Comment: 39 pages; 2nd revision; submitted to Information and Computatio

    Doubly infinite separation of quantum information and communication

    Get PDF
    We prove the existence of (one-way) communication tasks with a subconstant versus superconstant asymptotic gap, which we call "doubly infinite," between their quantum information and communication complexities. We do so by studying the exclusion game [C. Perry et al., Phys. Rev. Lett. 115, 030504 (2015)] for which there exist instances where the quantum information complexity tends to zero as the size of the input nn increases. By showing that the quantum communication complexity of these games scales at least logarithmically in nn, we obtain our result. We further show that the established lower bounds and gaps still hold even if we allow a small probability of error. However in this case, the nn-qubit quantum message of the zero-error strategy can be compressed polynomially.Comment: 16 pages, 2 figures. v4: minor errors fixed; close to published version; v5: financial support info adde
    corecore