2,183 research outputs found

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results

    Sharp analysis of low-rank kernel matrix approximations

    Get PDF
    We consider supervised learning problems within the positive-definite kernel framework, such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of computing the kernel matrix, which most frequently leads to algorithms with running time at least quadratic in the number of observations n, i.e., O(n^2). Low-rank approximations of the kernel matrix are often considered as they allow the reduction of running time complexities to O(p^2 n), where p is the rank of the approximation. The practicality of such methods thus depends on the required rank p. In this paper, we show that in the context of kernel ridge regression, for approximations based on a random subset of columns of the original kernel matrix, the rank p may be chosen to be linear in the degrees of freedom associated with the problem, a quantity which is classically used in the statistical analysis of such methods, and is often seen as the implicit number of parameters of non-parametric estimators. This result enables simple algorithms that have sub-quadratic running time complexity, but provably exhibit the same predictive performance than existing algorithms, for any given problem instance, and not only for worst-case situations

    Network Lasso: Clustering and Optimization in Large Graphs

    Full text link
    Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the \emph{network lasso}, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems

    A study in Rashomon curves and volumes: A new perspective on generalization and model simplicity in machine learning

    Full text link
    The Rashomon effect occurs when many different explanations exist for the same phenomenon. In machine learning, Leo Breiman used this term to characterize problems where many accurate-but-different models exist to describe the same data. In this work, we study how the Rashomon effect can be useful for understanding the relationship between training and test performance, and the possibility that simple-yet-accurate models exist for many problems. We consider the Rashomon set - the set of almost-equally-accurate models for a given problem - and study its properties and the types of models it could contain. We present the Rashomon ratio as a new measure related to simplicity of model classes, which is the ratio of the volume of the set of accurate models to the volume of the hypothesis space; the Rashomon ratio is different from standard complexity measures from statistical learning theory. For a hierarchy of hypothesis spaces, the Rashomon ratio can help modelers to navigate the trade-off between simplicity and accuracy. In particular, we find empirically that a plot of empirical risk vs. Rashomon ratio forms a characteristic Γ\Gamma-shaped Rashomon curve, whose elbow seems to be a reliable model selection criterion. When the Rashomon set is large, models that are accurate - but that also have various other useful properties - can often be obtained. These models might obey various constraints such as interpretability, fairness, or monotonicity.Comment: Revisited sections 3, 4, 5, 6, 7, and
    • …
    corecore