22,349 research outputs found

    The Case for a Mixed-Initiative Collaborative Neuroevolution Approach

    Get PDF
    It is clear that the current attempts at using algorithms to create artificial neural networks have had mixed success at best when it comes to creating large networks and/or complex behavior. This should not be unexpected, as creating an artificial brain is essentially a design problem. Human design ingenuity still surpasses computational design for most tasks in most domains, including architecture, game design, and authoring literary fiction. This leads us to ask which the best way is to combine human and machine design capacities when it comes to designing artificial brains. Both of them have their strengths and weaknesses; for example, humans are much too slow to manually specify thousands of neurons, let alone the billions of neurons that go into a human brain, but on the other hand they can rely on a vast repository of common-sense understanding and design heuristics that can help them perform a much better guided search in design space than an algorithm. Therefore, in this paper we argue for a mixed-initiative approach for collaborative online brain building and present first results towards this goal.Comment: Presented at WebAL-1: Workshop on Artificial Life and the Web 2014 (arXiv:1406.2507

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.Comment: 39 pages, 46 figures, 2 table

    A visual embedding for the unsupervised extraction of abstract semantics

    Get PDF
    Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20 K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST).Peer ReviewedPostprint (published version

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.World Trade Web; Null Models of Networks; Complex Networks; International Trade
    • …
    corecore