84,486 research outputs found

    Combining information seeking services into a meta supply chain of facts

    Get PDF
    The World Wide Web has become a vital supplier of information that allows organizations to carry on such tasks as business intelligence, security monitoring, and risk assessments. Having a quick and reliable supply of correct facts from perspective is often mission critical. By following design science guidelines, we have explored ways to recombine facts from multiple sources, each with possibly different levels of responsiveness and accuracy, into one robust supply chain. Inspired by prior research on keyword-based meta-search engines (e.g., metacrawler.com), we have adapted the existing question answering algorithms for the task of analysis and triangulation of facts. We present a first prototype for a meta approach to fact seeking. Our meta engine sends a user's question to several fact seeking services that are publicly available on the Web (e.g., ask.com, brainboost.com, answerbus.com, NSIR, etc.) and analyzes the returned results jointly to identify and present to the user those that are most likely to be factually correct. The results of our evaluation on the standard test sets widely used in prior research support the evidence for the following: 1) the value-added of the meta approach: its performance surpasses the performance of each supplier, 2) the importance of using fact seeking services as suppliers to the meta engine rather than keyword driven search portals, and 3) the resilience of the meta approach: eliminating a single service does not noticeably impact the overall performance. We show that these properties make the meta-approach a more reliable supplier of facts than any of the currently available stand-alone services

    Progressor: Social navigation support through open social student modeling

    Get PDF
    The increased volumes of online learning content have produced two problems: how to help students to find the most appropriate resources and how to engage them in using these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work presented in this paper combines the ideas of personalized and social learning in the context of educational hypermedia. We introduce Progressor, an innovative Web-based tool based on the concepts of social navigation and open student modeling that helps students to find the most relevant resources in a large collection of parameterized self-assessment questions on Java programming. We have evaluated Progressor in a semester-long classroom study, the results of which are presented in this paper. The study confirmed the impact of personalized social navigation support provided by the system in the target context. The interface encouraged students to explore more topics attempting more questions and achieving higher success rates in answering them. A deeper analysis of the social navigation support mechanism revealed that the top students successfully led the way to discovering most relevant resources by creating clear pathways for weaker students. © 2013 Taylor and Francis Group, LLC

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System
    • …
    corecore