2 research outputs found

    Exploring the Resilience of Some Lightweight Ciphers Against Profiled Single Trace Attacks

    Get PDF
    This paper compares attack outcomes w.r.t. profiled single trace attacks of four different lightweight ciphers in order to investigate which of their properties, if any, contribute to attack success. We show that mainly the diffusion properties of both the round function and the key schedule play a role. In particular, the more (reasonably statistically independent) intermediate values are produced in a target implementation, the better attacks succeed. A crucial aspect for lightweight ciphers is hence the key schedule which is often designed to be particularly light. This design choice implies that information from all round keys can be easily combined which results in attacks that succeed with ease

    Exploring the Resilience of Some Lightweight Ciphers Against Profiled Single Trace Attacks

    No full text
    Abstract. This paper compares attack outcomes w.r.t. profiled single trace attacks of four different lightweight ciphers in order to investigate which of their properties, if any, contribute to attack success. We show that mainly the diffusion properties of both the round function and the key schedule play a role. In particular, the more (reasonably statistically independent) intermediate values are produced in a target implementa-tion, the better attacks succeed. A crucial aspect for lightweight ciphers is hence the key schedule which is often designed to be particularly light. This design choice implies that information from all round keys can be easily combined which results in attacks that succeed with ease.1
    corecore