3 research outputs found

    Mining Web Dynamics for Search

    Get PDF
    Billions of web users collectively contribute to a dynamic web that preserves how information sources and descriptions change over time. This dynamic process sheds light on the quality of web content, and even indicates the temporal properties of information needs expressed via queries. However, existing commercial search engines typically utilize one crawl of web content (the latest) without considering the complementary information concealed in web dynamics. As a result, the generated rankings may be biased due to the efficiency of knowledge on page or hyperlink evolution, and the time-sensitive facet within search quality, e.g., freshness, has to be neglected. While previous research efforts have been focused on exploring the temporal dimension in retrieval process, few of them showed consistent improvements on large-scale real-world archival web corpus with a broad time span.We investigate how to utilize the changes of web pages and hyperlinks to improve search quality, in terms of freshness and relevance of search results. Three applications that I have focused on are: (1) document representation, in which the anchortext (short descriptive text associated with hyperlinks) importance is estimated by considering its historical status; (2) web authority estimation, in which web freshness is quantified and utilized for controlling the authority propagation; and (3) learning to rank, in which freshness and relevance are optimized simultaneously in an adaptive way depending on query type. The contributions of this thesis are: (1) incorporate web dynamics information into critical components within search infrastructure in a principled way; and (2) empirically verify the proposed methods by conducting experiments based on (or depending on) a large-scale real-world archival web corpus, and demonstrated their superiority over existing state-of-the-art

    Temporal dynamics in information retrieval

    Get PDF
    The passage of time is unrelenting. Time is an omnipresent feature of our existence, serving as a context to frame change driven by events and phenomena in our personal lives and social constructs. Accordingly, various elements of time are woven throughout information itself, and information behaviours such as creation, seeking and utilisation. Time plays a central role in many aspects of information retrieval (IR). It can not only distinguish the interpretation of information, but also profoundly influence the intentions and expectations of users' information seeking activity. Many time-based patterns and trends - namely temporal dynamics - are evident in streams of information behaviour by individuals and crowds. A temporal dynamic refers to a periodic regularity, or, a one-off or irregular past, present or future of a particular element (e.g., word, topic or query popularity) - driven by predictable and unpredictable time-based events and phenomena. Several challenges and opportunities related to temporal dynamics are apparent throughout IR. This thesis explores temporal dynamics from the perspective of query popularity and meaning, and word use and relationships over time. More specifically, the thesis posits that temporal dynamics provide tacit meaning and structure of information and information seeking. As such, temporal dynamics are a ‘two-way street’ since they must be supported, but also conversely, can be exploited to improve time-aware IR effectiveness. Real-time temporal dynamics in information seeking must be supported for consistent user satisfaction over time. Uncertainty about what the user expects is a perennial problem for IR systems, further confounded by changes over time. To alleviate this issue, IR systems can: (i) assist the user to submit an effective query (e.g., error-free and descriptive), and (ii) better anticipate what the user is most likely to want in relevance ranking. I first explore methods to help users formulate queries through time-aware query auto-completion, which can suggest both recent and always popular queries. I propose and evaluate novel approaches for time-sensitive query auto-completion, and demonstrate state-of-the-art performance of up to 9.2% improvement above the hard baseline. Notably, I find results are reflected across diverse search scenarios in different languages, confirming the pervasive and language agnostic nature of temporal dynamics. Furthermore, I explore the impact of temporal dynamics on the motives behind users' information seeking, and thus how relevance itself is subject to temporal dynamics. I find that temporal dynamics have a dramatic impact on what users expect over time for a considerable proportion of queries. In particular, I find the most likely meaning of ambiguous queries is affected over short and long-term periods (e.g., hours to months) by several periodic and one-off event temporal dynamics. Additionally, I find that for event-driven multi-faceted queries, relevance can often be inferred by modelling the temporal dynamics of changes in related information. In addition to real-time temporal dynamics, previously observed temporal dynamics offer a complementary opportunity as a tacit dimension which can be exploited to inform more effective IR systems. IR approaches are typically based on methods which characterise the nature of information through the statistical distributions of words and phrases. In this thesis I look to model and exploit the temporal dimension of the collection, characterised by temporal dynamics, in these established IR approaches. I explore how the temporal dynamic similarity of word and phrase use in a collection can be exploited to infer temporal semantic relationships between the terms. I propose an approach to uncover a query topic's "chronotype" terms -- that is, its most distinctive and temporally interdependent terms, based on a mix of temporal and non-temporal evidence. I find exploiting chronotype terms in temporal query expansion leads to significantly improved retrieval performance in several time-based collections. Temporal dynamics provide both a challenge and an opportunity for IR systems. Overall, the findings presented in this thesis demonstrate that temporal dynamics can be used to derive tacit structure and meaning of information and information behaviour, which is then valuable for improving IR. Hence, time-aware IR systems which take temporal dynamics into account can better satisfy users consistently by anticipating changing user expectations, and maximising retrieval effectiveness over time

    Exploring term temporality for pseudo-relevance feedback

    No full text
    As digital collections expand, the importance of the temporal aspect of information has become increasingly apparent. The aim of this paper is to investigate the effect of using long-term temporal profiles of terms in information retrieval by enhancing the term selection process of pseudo-relevance feedback (PRF). For this purpose, two temporal PRF approaches were introduced considering only temporal aspect and temporal along with textual aspect. Experiments used the AP88-89 and WSJ87-92 test collections with TREC Ad-Hoc Topics 51-100. Term temporal profiles are extracted from the Google Books n-grams dataset. The results show that the long-term temporal aspects of terms are capable of enhancing retrieval effectiveness
    corecore