3 research outputs found

    Exploring Scientific Application Performance Using Large Scale Object Storage

    Full text link
    One of the major performance and scalability bottlenecks in large scientific applications is parallel reading and writing to supercomputer I/O systems. The usage of parallel file systems and consistency requirements of POSIX, that all the traditional HPC parallel I/O interfaces adhere to, pose limitations to the scalability of scientific applications. Object storage is a widely used storage technology in cloud computing and is more frequently proposed for HPC workload to address and improve the current scalability and performance of I/O in scientific applications. While object storage is a promising technology, it is still unclear how scientific applications will use object storage and what the main performance benefits will be. This work addresses these questions, by emulating an object storage used by a traditional scientific application and evaluating potential performance benefits. We show that scientific applications can benefit from the usage of object storage on large scales.Comment: Preprint submitted to WOPSSS workshop at ISC 201

    Characterizing Deep-Learning I/O Workloads in TensorFlow

    Full text link
    The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and then moved to accelerator for computation. In addition, checkpointing and restart operations are carried out to allow DL computing frameworks to restart quickly from a checkpoint. Because of this, I/O affects the performance of DL applications. In this work, we characterize the I/O performance and scaling of TensorFlow, an open-source programming framework developed by Google and specifically designed for solving DL problems. To measure TensorFlow I/O performance, we first design a micro-benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application based on AlexNet to measure the performance cost of I/O and checkpointing in TensorFlow. To improve the checkpointing performance, we design and implement a burst buffer. We find that increasing the number of threads increases TensorFlow bandwidth by a maximum of 2.3x and 7.8x on our benchmark environments. The use of the tensorFlow prefetcher results in a complete overlap of computation on accelerator and input pipeline on CPU eliminating the effective cost of I/O on the overall performance. The use of a burst buffer to checkpoint to a fast small capacity storage and copy asynchronously the checkpoints to a slower large capacity storage resulted in a performance improvement of 2.6x with respect to checkpointing directly to slower storage on our benchmark environment.Comment: Accepted for publication at pdsw-DISCS 201

    tf-Darshan: Understanding Fine-grained I/O Performance in Machine Learning Workloads

    Full text link
    Machine Learning applications on HPC systems have been gaining popularity in recent years. The upcoming large scale systems will offer tremendous parallelism for training through GPUs. However, another heavy aspect of Machine Learning is I/O, and this can potentially be a performance bottleneck. TensorFlow, one of the most popular Deep-Learning platforms, now offers a new profiler interface and allows instrumentation of TensorFlow operations. However, the current profiler only enables analysis at the TensorFlow platform level and does not provide system-level information. In this paper, we extend TensorFlow Profiler and introduce tf-Darshan, both a profiler and tracer, that performs instrumentation through Darshan. We use the same Darshan shared instrumentation library and implement a runtime attachment without using a system preload. We can extract Darshan profiling data structures during TensorFlow execution to enable analysis through the TensorFlow profiler. We visualize the performance results through TensorBoard, the web-based TensorFlow visualization tool. At the same time, we do not alter Darshan's existing implementation. We illustrate tf-Darshan by performing two case studies on ImageNet image and Malware classification. We show that by guiding optimization using data from tf-Darshan, we increase POSIX I/O bandwidth by up to 19% by selecting data for staging on fast tier storage. We also show that Darshan has the potential of being used as a runtime library for profiling and providing information for future optimization.Comment: Accepted for publication at the 2020 International Conference on Cluster Computing (CLUSTER 2020
    corecore