48 research outputs found

    Exploring Nearest Neighbor Approaches for Image Captioning

    Full text link
    We explore a variety of nearest neighbor baseline approaches for image captioning. These approaches find a set of nearest neighbor images in the training set from which a caption may be borrowed for the query image. We select a caption for the query image by finding the caption that best represents the "consensus" of the set of candidate captions gathered from the nearest neighbor images. When measured by automatic evaluation metrics on the MS COCO caption evaluation server, these approaches perform as well as many recent approaches that generate novel captions. However, human studies show that a method that generates novel captions is still preferred over the nearest neighbor approach

    Blindfold Baselines for Embodied QA

    Full text link
    We explore blindfold (question-only) baselines for Embodied Question Answering. The EmbodiedQA task requires an agent to answer a question by intelligently navigating in a simulated environment, gathering necessary visual information only through first-person vision before finally answering. Consequently, a blindfold baseline which ignores the environment and visual information is a degenerate solution, yet we show through our experiments on the EQAv1 dataset that a simple question-only baseline achieves state-of-the-art results on the EmbodiedQA task in all cases except when the agent is spawned extremely close to the object.Comment: NIPS 2018 Visually-Grounded Interaction and Language (ViGilL) Worksho

    Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?

    Full text link
    We conduct large-scale studies on `human attention' in Visual Question Answering (VQA) to understand where humans choose to look to answer questions about images. We design and test multiple game-inspired novel attention-annotation interfaces that require the subject to sharpen regions of a blurred image to answer a question. Thus, we introduce the VQA-HAT (Human ATtention) dataset. We evaluate attention maps generated by state-of-the-art VQA models against human attention both qualitatively (via visualizations) and quantitatively (via rank-order correlation). Overall, our experiments show that current attention models in VQA do not seem to be looking at the same regions as humans.Comment: 5 pages, 4 figures, 3 tables, presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY. arXiv admin note: substantial text overlap with arXiv:1606.0355

    Simple Baseline for Visual Question Answering

    Full text link
    We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .Comment: One comparison method's scores are put into the correct column, and a new experiment of generating attention map is adde

    Shifting the Baseline: Single Modality Performance on Visual Navigation & QA

    Full text link
    We demonstrate the surprising strength of unimodal baselines in multimodal domains, and make concrete recommendations for best practices in future research. Where existing work often compares against random or majority class baselines, we argue that unimodal approaches better capture and reflect dataset biases and therefore provide an important comparison when assessing the performance of multimodal techniques. We present unimodal ablations on three recent datasets in visual navigation and QA, seeing an up to 29% absolute gain in performance over published baselines.Comment: Published at The Conference of the North American Chapter of the Association for Computational Linguistics (NAACL) 201

    Visual Referring Expression Recognition: What Do Systems Actually Learn?

    Full text link
    We present an empirical analysis of the state-of-the-art systems for referring expression recognition -- the task of identifying the object in an image referred to by a natural language expression -- with the goal of gaining insight into how these systems reason about language and vision. Surprisingly, we find strong evidence that even sophisticated and linguistically-motivated models for this task may ignore the linguistic structure, instead relying on shallow correlations introduced by unintended biases in the data selection and annotation process. For example, we show that a system trained and tested on the input image without the input referring expression\textit{without the input referring expression} can achieve a precision of 71.2% in top-2 predictions. Furthermore, a system that predicts only the object category given the input can achieve a precision of 84.2% in top-2 predictions. These surprisingly positive results for what should be deficient prediction scenarios suggest that careful analysis of what our models are learning -- and further, how our data is constructed -- is critical as we seek to make substantive progress on grounded language tasks.Comment: NAACL2018 shor

    Contrastive Learning for Image Captioning

    Full text link
    Image captioning, a popular topic in computer vision, has achieved substantial progress in recent years. However, the distinctiveness of natural descriptions is often overlooked in previous work. It is closely related to the quality of captions, as distinctive captions are more likely to describe images with their unique aspects. In this work, we propose a new learning method, Contrastive Learning (CL), for image captioning. Specifically, via two constraints formulated on top of a reference model, the proposed method can encourage distinctiveness, while maintaining the overall quality of the generated captions. We tested our method on two challenging datasets, where it improves the baseline model by significant margins. We also showed in our studies that the proposed method is generic and can be used for models with various structures.Comment: accepted to 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, US

    Search Engine Guided Non-Parametric Neural Machine Translation

    Full text link
    In this paper, we extend an attention-based neural machine translation (NMT) model by allowing it to access an entire training set of parallel sentence pairs even after training. The proposed approach consists of two stages. In the first stage--retrieval stage--, an off-the-shelf, black-box search engine is used to retrieve a small subset of sentence pairs from a training set given a source sentence. These pairs are further filtered based on a fuzzy matching score based on edit distance. In the second stage--translation stage--, a novel translation model, called translation memory enhanced NMT (TM-NMT), seamlessly uses both the source sentence and a set of retrieved sentence pairs to perform the translation. Empirical evaluation on three language pairs (En-Fr, En-De, and En-Es) shows that the proposed approach significantly outperforms the baseline approach and the improvement is more significant when more relevant sentence pairs were retrieved.Comment: Accepted by AAAI 201

    A Neural Compositional Paradigm for Image Captioning

    Full text link
    Mainstream captioning models often follow a sequential structure to generate captions, leading to issues such as introduction of irrelevant semantics, lack of diversity in the generated captions, and inadequate generalization performance. In this paper, we present an alternative paradigm for image captioning, which factorizes the captioning procedure into two stages: (1) extracting an explicit semantic representation from the given image; and (2) constructing the caption based on a recursive compositional procedure in a bottom-up manner. Compared to conventional ones, our paradigm better preserves the semantic content through an explicit factorization of semantics and syntax. By using the compositional generation procedure, caption construction follows a recursive structure, which naturally fits the properties of human language. Moreover, the proposed compositional procedure requires less data to train, generalizes better, and yields more diverse captions.Comment: 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montr\'eal, Canad

    Image Captioning with Semantic Attention

    Full text link
    Automatically generating a natural language description of an image has attracted interests recently both because of its importance in practical applications and because it connects two major artificial intelligence fields: computer vision and natural language processing. Existing approaches are either top-down, which start from a gist of an image and convert it into words, or bottom-up, which come up with words describing various aspects of an image and then combine them. In this paper, we propose a new algorithm that combines both approaches through a model of semantic attention. Our algorithm learns to selectively attend to semantic concept proposals and fuse them into hidden states and outputs of recurrent neural networks. The selection and fusion form a feedback connecting the top-down and bottom-up computation. We evaluate our algorithm on two public benchmarks: Microsoft COCO and Flickr30K. Experimental results show that our algorithm significantly outperforms the state-of-the-art approaches consistently across different evaluation metrics.Comment: 10 pages, 5 figures, CVPR1
    corecore