4 research outputs found

    Exploring Deep Anomaly Detection Methods Based on Capsule Net

    Full text link
    In this paper, we develop and explore deep anomaly detection techniques based on the capsule network (CapsNet) for image data. Being able to encoding intrinsic spatial relationship between parts and a whole, CapsNet has been applied as both a classifier and deep autoencoder. This inspires us to design a prediction-probability-based and a reconstruction-error-based normality score functions for evaluating the "outlierness" of unseen images. Our results on three datasets demonstrate that the prediction-probability-based method performs consistently well, while the reconstruction-error-based approach is relatively sensitive to the similarity between labeled and unlabeled images. Furthermore, both of the CapsNet-based methods outperform the principled benchmark methods in many cases.Comment: Presented in the "ICML 2019 Workshop on Uncertainty & Robustness in Deep Learning", June 14, Long Beach, California, US

    Multiresolution Knowledge Distillation for Anomaly Detection

    Full text link
    Unsupervised representation learning has proved to be a critical component of anomaly detection/localization in images. The challenges to learn such a representation are two-fold. Firstly, the sample size is not often large enough to learn a rich generalizable representation through conventional techniques. Secondly, while only normal samples are available at training, the learned features should be discriminative of normal and anomalous samples. Here, we propose to use the "distillation" of features at various layers of an expert network, pre-trained on ImageNet, into a simpler cloner network to tackle both issues. We detect and localize anomalies using the discrepancy between the expert and cloner networks' intermediate activation values given the input data. We show that considering multiple intermediate hints in distillation leads to better exploiting the expert's knowledge and more distinctive discrepancy compared to solely utilizing the last layer activation values. Notably, previous methods either fail in precise anomaly localization or need expensive region-based training. In contrast, with no need for any special or intensive training procedure, we incorporate interpretability algorithms in our novel framework for the localization of anomalous regions. Despite the striking contrast between some test datasets and ImageNet, we achieve competitive or significantly superior results compared to the SOTA methods on MNIST, F-MNIST, CIFAR-10, MVTecAD, Retinal-OCT, and two Medical datasets on both anomaly detection and localization

    Unsupervised Anomaly Detection with Multi-scale Interpolated Gaussian Descriptors

    Full text link
    Current unsupervised anomaly detection and pixel-wise anomaly localisation systems are commonly formulated as one-class classifiers that depend on an effective estimation of the distribution of normal images and robust criteria to identify anomalies. However, the distribution of normal images estimated by current systems tends to be unstable for classes of normal images that are under-represented in the training set, and the anomaly identification criteria commonly explored in the field does not work well for multi-scale structural and non-structural anomalies. In this paper, we introduce a new unsupervised anomaly detection and localisation method designed to address these two issues. More specifically, we introduce a normal image distribution estimation method that is robust to under-represented classes of normal images -- this method is based on adversarially interpolated descriptors from training images and a Gaussian classifier. We also propose a new anomaly identification criterion that can accurately detect and localise multi-scale structural and non-structural anomalies. In extensive experiments on MNIST, Fashion MNIST, CIFAR10, MVTec AD and two medical datasets, our approach shows better results than the current state of the art in the standard experimental setup for unsupervised anomaly detection and localisation. Code is available at https://github.com/tianyu0207/IGD.Comment: Under Revie

    Puzzle-AE: Novelty Detection in Images through Solving Puzzles

    Full text link
    Autoencoder, as an essential part of many anomaly detection methods, is lacking flexibility on normal data in complex datasets. U-Net is proved to be effective for this purpose but overfits on the training data if trained by just using reconstruction error similar to other AE-based frameworks. Puzzle-solving, as a pretext task of self-supervised learning (SSL) methods, has earlier proved its ability in learning semantically meaningful features. We show that training U-Nets based on this task is an effective remedy that prevents overfitting and facilitates learning beyond pixel-level features. Shortcut solutions, however, are a big challenge in SSL tasks, including jigsaw puzzles. We propose adversarial robust training as an effective automatic shortcut removal. We achieve competitive or superior results compared to the State of the Art (SOTA) anomaly detection methods on various toy and real-world datasets. Unlike many competitors, the proposed framework is stable, fast, data-efficient, and does not require unprincipled early stopping
    corecore