5,782 research outputs found

    Joint Object and Part Segmentation using Deep Learned Potentials

    Full text link
    Segmenting semantic objects from images and parsing them into their respective semantic parts are fundamental steps towards detailed object understanding in computer vision. In this paper, we propose a joint solution that tackles semantic object and part segmentation simultaneously, in which higher object-level context is provided to guide part segmentation, and more detailed part-level localization is utilized to refine object segmentation. Specifically, we first introduce the concept of semantic compositional parts (SCP) in which similar semantic parts are grouped and shared among different objects. A two-channel fully convolutional network (FCN) is then trained to provide the SCP and object potentials at each pixel. At the same time, a compact set of segments can also be obtained from the SCP predictions of the network. Given the potentials and the generated segments, in order to explore long-range context, we finally construct an efficient fully connected conditional random field (FCRF) to jointly predict the final object and part labels. Extensive evaluation on three different datasets shows that our approach can mutually enhance the performance of object and part segmentation, and outperforms the current state-of-the-art on both tasks

    Iterative Instance Segmentation

    Full text link
    Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural constraints are given. We sidestep this problem by reducing structured prediction to a sequence of unconstrained prediction problems and demonstrate that this approach is capable of automatically discovering priors on shape, contiguity of region predictions and smoothness of region contours from data without any a priori specification. On the instance segmentation task, this method outperforms the state-of-the-art, achieving a mean APr\mathrm{AP}^{r} of 63.6% at 50% overlap and 43.3% at 70% overlap.Comment: 13 pages, 10 figures; IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Scoring and Classifying with Gated Auto-encoders

    Full text link
    Auto-encoders are perhaps the best-known non-probabilistic methods for representation learning. They are conceptually simple and easy to train. Recent theoretical work has shed light on their ability to capture manifold structure, and drawn connections to density modelling. This has motivated researchers to seek ways of auto-encoder scoring, which has furthered their use in classification. Gated auto-encoders (GAEs) are an interesting and flexible extension of auto-encoders which can learn transformations among different images or pixel covariances within images. However, they have been much less studied, theoretically or empirically. In this work, we apply a dynamical systems view to GAEs, deriving a scoring function, and drawing connections to Restricted Boltzmann Machines. On a set of deep learning benchmarks, we also demonstrate their effectiveness for single and multi-label classification

    Exploring the landscapes of "computing": digital, neuromorphic, unconventional -- and beyond

    Get PDF
    The acceleration race of digital computing technologies seems to be steering toward impasses -- technological, economical and environmental -- a condition that has spurred research efforts in alternative, "neuromorphic" (brain-like) computing technologies. Furthermore, since decades the idea of exploiting nonlinear physical phenomena "directly" for non-digital computing has been explored under names like "unconventional computing", "natural computing", "physical computing", or "in-materio computing". This has been taking place in niches which are small compared to other sectors of computer science. In this paper I stake out the grounds of how a general concept of "computing" can be developed which comprises digital, neuromorphic, unconventional and possible future "computing" paradigms. The main contribution of this paper is a wide-scope survey of existing formal conceptualizations of "computing". The survey inspects approaches rooted in three different kinds of background mathematics: discrete-symbolic formalisms, probabilistic modeling, and dynamical-systems oriented views. It turns out that different choices of background mathematics lead to decisively different understandings of what "computing" is. Across all of this diversity, a unifying coordinate system for theorizing about "computing" can be distilled. Within these coordinates I locate anchor points for a foundational formal theory of a future computing-engineering discipline that includes, but will reach beyond, digital and neuromorphic computing.Comment: An extended and carefully revised version of this manuscript has now (March 2021) been published as "Toward a generalized theory comprising digital, neuromorphic, and unconventional computing" in the new open-access journal Neuromorphic Computing and Engineerin
    • …
    corecore