6 research outputs found

    Iterative Instance Segmentation

    Full text link
    Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural constraints are given. We sidestep this problem by reducing structured prediction to a sequence of unconstrained prediction problems and demonstrate that this approach is capable of automatically discovering priors on shape, contiguity of region predictions and smoothness of region contours from data without any a priori specification. On the instance segmentation task, this method outperforms the state-of-the-art, achieving a mean APr\mathrm{AP}^{r} of 63.6% at 50% overlap and 43.3% at 70% overlap.Comment: 13 pages, 10 figures; IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Scoring and Classifying with Gated Auto-encoders

    Full text link
    Auto-encoders are perhaps the best-known non-probabilistic methods for representation learning. They are conceptually simple and easy to train. Recent theoretical work has shed light on their ability to capture manifold structure, and drawn connections to density modelling. This has motivated researchers to seek ways of auto-encoder scoring, which has furthered their use in classification. Gated auto-encoders (GAEs) are an interesting and flexible extension of auto-encoders which can learn transformations among different images or pixel covariances within images. However, they have been much less studied, theoretically or empirically. In this work, we apply a dynamical systems view to GAEs, deriving a scoring function, and drawing connections to Restricted Boltzmann Machines. On a set of deep learning benchmarks, we also demonstrate their effectiveness for single and multi-label classification

    Deep Learning of Representations: Looking Forward

    Full text link
    Deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations, with higher levels representing more abstract concepts. Although the study of deep learning has already led to impressive theoretical results, learning algorithms and breakthrough experiments, several challenges lie ahead. This paper proposes to examine some of these challenges, centering on the questions of scaling deep learning algorithms to much larger models and datasets, reducing optimization difficulties due to ill-conditioning or local minima, designing more efficient and powerful inference and sampling procedures, and learning to disentangle the factors of variation underlying the observed data. It also proposes a few forward-looking research directions aimed at overcoming these challenges

    Exploring Compositional High Order Pattern Potentials for Structured Output Learning

    No full text
    When modeling structured outputs such as image segmentations, prediction can be improved by accurately modeling structure present in the labels. A key challenge is developing tractable models that are able to capture complex high level structure like shape. In this work, we study the learning of a general class of pattern-like high order potential, which we call Compositional High Order Pattern Potentials (CHOPPs). We show that CHOPPs include the linear deviation pattern potentials of Rother et al. [26] and also Restricted Boltzmann Machines (RBMs); we also establish the near equivalence of these two models. Experimentally, we show that performance is affected significantly by the degree of variability present in the datasets, and we define a quantitative variability measure to aid in studying this. We then improve CHOPPs performance in high variability datasets with two primary contributions: (a) developing a loss-sensitive joint learning procedure, so that internal pattern parameters can be learned in conjunction with other model potentials to minimize expected loss;and (b) learning an image-dependent mapping that encourages or inhibits patterns depending on image features. We also explore varying how multiple patterns are composed, and learning convolutional patterns. Quantitative results on challenging highly variable datasets show that the joint learning and image-dependent high order potentials can improve performance. 1
    corecore