1,461 research outputs found

    Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

    Get PDF
    While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This leads to defining weakly-communicating or multi-chain MDPs. In this paper, we introduce \tucrl, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with SCS^{\texttt{C}} communicating states, AA actions and ΓC≤SC\Gamma^{\texttt{C}} \leq S^{\texttt{C}} possible communicating next states, we derive a O~(DCΓCSCAT)\widetilde{O}(D^{\texttt{C}} \sqrt{\Gamma^{\texttt{C}} S^{\texttt{C}} AT}) regret bound, where DCD^{\texttt{C}} is the diameter (i.e., the longest shortest path) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP. Finally, we report numerical simulations supporting our theoretical findings and showing how TUCRL overcomes the limitations of the state-of-the-art

    Probably Approximately Correct MDP Learning and Control With Temporal Logic Constraints

    Full text link
    We consider synthesis of control policies that maximize the probability of satisfying given temporal logic specifications in unknown, stochastic environments. We model the interaction between the system and its environment as a Markov decision process (MDP) with initially unknown transition probabilities. The solution we develop builds on the so-called model-based probably approximately correct Markov decision process (PAC-MDP) methodology. The algorithm attains an ε\varepsilon-approximately optimal policy with probability 1−δ1-\delta using samples (i.e. observations), time and space that grow polynomially with the size of the MDP, the size of the automaton expressing the temporal logic specification, 1ε\frac{1}{\varepsilon}, 1δ\frac{1}{\delta} and a finite time horizon. In this approach, the system maintains a model of the initially unknown MDP, and constructs a product MDP based on its learned model and the specification automaton that expresses the temporal logic constraints. During execution, the policy is iteratively updated using observation of the transitions taken by the system. The iteration terminates in finitely many steps. With high probability, the resulting policy is such that, for any state, the difference between the probability of satisfying the specification under this policy and the optimal one is within a predefined bound.Comment: 9 pages, 5 figures, Accepted by 2014 Robotics: Science and Systems (RSS

    Experimental results : Reinforcement Learning of POMDPs using Spectral Methods

    Get PDF
    We propose a new reinforcement learning algorithm for partially observable Markov decision processes (POMDP) based on spectral decomposition methods. While spectral methods have been previously employed for consistent learning of (passive) latent variable models such as hidden Markov models, POMDPs are more challenging since the learner interacts with the environment and possibly changes the future observations in the process. We devise a learning algorithm running through epochs, in each epoch we employ spectral techniques to learn the POMDP parameters from a trajectory generated by a fixed policy. At the end of the epoch, an optimization oracle returns the optimal memoryless planning policy which maximizes the expected reward based on the estimated POMDP model. We prove an order-optimal regret bound with respect to the optimal memoryless policy and efficient scaling with respect to the dimensionality of observation and action spaces.Comment: 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spai

    Mean-Variance Optimization in Markov Decision Processes

    Get PDF
    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudopolynomial exact and approximation algorithms.Comment: A full version of an ICML 2011 pape
    • …
    corecore