1 research outputs found

    Exploration of Faulty Hamiltonian Graphs

    Full text link
    We consider the problem of exploration of networks, some of whose edges are faulty. A mobile agent, situated at a starting node and unaware of which edges are faulty, has to explore the connected fault-free component of this node by visiting all of its nodes. The cost of the exploration is the number of edge traversals. For a given network and given starting node, the overhead of an exploration algorithm is the worst-case ratio (taken over all fault configurations) of its cost to the cost of an optimal algorithm which knows where faults are situated. An exploration algorithm, for a given network and given starting node, is called perfectly competitive if its overhead is the smallest among all exploration algorithms not knowing the location of faults. We design a perfectly competitive exploration algorithm for any ring, and show that, for networks modeled by hamiltonian graphs, the overhead of any DFS exploration is at most 10/9 times larger than that of a perfectly competitive algorithm. Moreover, for hamiltonian graphs of size at least 24, this overhead is less than 6% larger than that of a perfectly competitive algorithm.Comment: 17 pages, 1 figur
    corecore