3 research outputs found

    Pre-trained Word Embeddings for Goal-conditional Transfer Learning in Reinforcement Learning

    Full text link
    Reinforcement learning (RL) algorithms typically start tabula rasa, without any prior knowledge of the environment, and without any prior skills. This however often leads to low sample efficiency, requiring a large amount of interaction with the environment. This is especially true in a lifelong learning setting, in which the agent needs to continually extend its capabilities. In this paper, we examine how a pre-trained task-independent language model can make a goal-conditional RL agent more sample efficient. We do this by facilitating transfer learning between different related tasks. We experimentally demonstrate our approach on a set of object navigation tasks.Comment: Paper accepted to the ICML 2020 Language in Reinforcement Learning (LaReL) Worksho

    Diverse Exploration via InfoMax Options

    Full text link
    In this paper, we study the problem of autonomously discovering temporally abstracted actions, or options, for exploration in reinforcement learning. For learning diverse options suitable for exploration, we introduce the infomax termination objective defined as the mutual information between options and their corresponding state transitions. We derive a scalable optimization scheme for maximizing this objective via the termination condition of options, yielding the InfoMax Option Critic (IMOC) algorithm. Through illustrative experiments, we empirically show that IMOC learns diverse options and utilizes them for exploration. Moreover, we show that IMOC scales well to continuous control tasks.Comment: Preprint. Under revie
    corecore