19 research outputs found

    GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts

    Full text link
    We present the main concepts, components, and usage of GASOL, a Gas AnalysiS and Optimization tooL for Ethereum smart contracts. GASOL offers a wide variety of cost models that allow inferring the gas consumption associated to selected types of EVM instructions and/or inferring the number of times that such types of bytecode instructions are executed. Among others, we have cost models to measure only storage opcodes, to measure a selected family of gas-consumption opcodes following the Ethereum's classification, to estimate the cost of a selected program line, etc. After choosing the desired cost model and the function of interest, GASOL returns to the user an upper bound of the cost for this function. As the gas consumption is often dominated by the instructions that access the storage, GASOL uses the gas analysis to detect under-optimized storage patterns, and includes an (optional) automatic optimization of the selected function. Our tool can be used within an Eclipse plugin for Solidity which displays the gas and instructions bounds and, when applicable, the gas-optimized Solidity function

    The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contracts

    Get PDF
    Modern blockchains, such as Ethereum, enable the execution of so-called smart contracts - programs that are executed across a decentralised network of nodes. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In the past few years, several smart contracts have been exploited by attackers. However, a new trend towards a more proactive approach seems to be on the rise, where attackers do not search for vulnerable contracts anymore. Instead, they try to lure their victims into traps by deploying seemingly vulnerable contracts that contain hidden traps. This new type of contracts is commonly referred to as honeypots. In this paper, we present the first systematic analysis of honeypot smart contracts, by investigating their prevalence, behaviour and impact on the Ethereum blockchain. We develop a taxonomy of honeypot techniques and use this to build HoneyBadger - a tool that employs symbolic execution and well defined heuristics to expose honeypots. We perform a large-scale analysis on more than 2 million smart contracts and show that our tool not only achieves high precision, but is also highly efficient. We identify 690 honeypot smart contracts as well as 240 victims in the wild, with an accumulated profit of more than $90,000 for the honeypot creators. Our manual validation shows that 87% of the reported contracts are indeed honeypots

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    Securing Smart Contract On The Fly

    Full text link
    We present Solythesis, a source to source Solidity compiler which takes a smart contract code and a user specified invariant as the input and produces an instrumented contract that rejects all transactions that violate the invariant. The design of Solythesis is driven by our observation that the consensus protocol and the storage layer are the primary and the secondary performance bottlenecks of Ethereum, respectively. Solythesis operates with our novel delta update and delta check techniques to minimize the overhead caused by the instrumented storage access statements. Our experimental results validate our hypothesis that the overhead of runtime validation, which is often too expensive for other domains, is in fact negligible for smart contracts. The CPU overhead of Solythesis is only 0.12% on average for our 23 benchmark contracts
    corecore