2 research outputs found

    Application Inference using Machine Learning based Side Channel Analysis

    Full text link
    The proliferation of ubiquitous computing requires energy-efficient as well as secure operation of modern processors. Side channel attacks are becoming a critical threat to security and privacy of devices embedded in modern computing infrastructures. Unintended information leakage via physical signatures such as power consumption, electromagnetic emission (EM) and execution time have emerged as a key security consideration for SoCs. Also, information published on purpose at user privilege level accessible through software interfaces results in software only attacks. In this paper, we used a supervised learning based approach for inferring applications executing on android platform based on features extracted from EM side-channel emissions and software exposed dynamic voltage frequency scaling(DVFS) states. We highlight the importance of machine learning based approach in utilizing these multi-dimensional features on a complex SoC, against profiling-based approaches. We also show that learning the instantaneous frequency states polled from onboard frequency driver (cpufreq) is adequate to identify a known application and flag potentially malicious unknown application. The experimental results on benchmarking applications running on ARMv8 processor in Snapdragon 820 board demonstrates early detection of these apps, and atleast 85% accuracy in detecting unknown applications. Overall, the highlight is to utilize a low-complexity path to application inference attacks through learning instantaneous frequency states pattern of CPU core

    Adversarial Attack Based Countermeasures against Deep Learning Side-Channel Attacks

    Full text link
    Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly threatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks
    corecore