27,929 research outputs found

    Deep Local and Global Spatiotemporal Feature Aggregation for Blind Video Quality Assessment

    Full text link
    In recent years, deep learning has achieved promising success for multimedia quality assessment, especially for image quality assessment (IQA). However, since there exist more complex temporal characteristics in videos, very little work has been done on video quality assessment (VQA) by exploiting powerful deep convolutional neural networks (DCNNs). In this paper, we propose an efficient VQA method named Deep SpatioTemporal video Quality assessor (DeepSTQ) to predict the perceptual quality of various distorted videos in a no-reference manner. In the proposed DeepSTQ, we first extract local and global spatiotemporal features by pre-trained deep learning models without fine-tuning or training from scratch. The composited features consider distorted video frames as well as frame difference maps from both global and local views. Then, the feature aggregation is conducted by the regression model to predict the perceptual video quality. Finally, experimental results demonstrate that our proposed DeepSTQ outperforms state-of-the-art quality assessment algorithms

    Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank

    Get PDF
    For many applications the collection of labeled data is expensive laborious. Exploitation of unlabeled data during training is thus a long pursued objective of machine learning. Self-supervised learning addresses this by positing an auxiliary task (different, but related to the supervised task) for which data is abundantly available. In this paper, we show how ranking can be used as a proxy task for some regression problems. As another contribution, we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. We apply our framework to two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results for both IQA and crowd counting. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning and we show that this reduces labeling effort by up to 50%.Comment: Accepted at TPAMI. (Keywords: Learning from rankings, image quality assessment, crowd counting, active learning). arXiv admin note: text overlap with arXiv:1803.0309

    Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

    Full text link
    Hyperspectral imaging can help better understand the characteristics of different materials, compared with traditional image systems. However, only high-resolution multispectral (HrMS) and low-resolution hyperspectral (LrHS) images can generally be captured at video rate in practice. In this paper, we propose a model-based deep learning approach for merging an HrMS and LrHS images to generate a high-resolution hyperspectral (HrHS) image. In specific, we construct a novel MS/HS fusion model which takes the observation models of low-resolution images and the low-rankness knowledge along the spectral mode of HrHS image into consideration. Then we design an iterative algorithm to solve the model by exploiting the proximal gradient method. And then, by unfolding the designed algorithm, we construct a deep network, called MS/HS Fusion Net, with learning the proximal operators and model parameters by convolutional neural networks. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research.Comment: 10 pages, 7 figure
    • …
    corecore