3 research outputs found

    Exploiting Network Topology Information to Mitigate Ambiguities in VMP Localization

    Get PDF

    On the Trade-off Between Accuracy and Delay in Cooperative UWB Navigation

    Get PDF
    In ultra-wide bandwidth (UWB) cooperative navigation, nodes estimate their position by means of shared information. Such sharing has a direct impact on the position accuracy and medium access control (MAC) delay, which needs to be considered when designing UWB navigation systems. We investigate the interplay between UWB position accuracy and MAC delay for cooperative scenarios. We quantify this relation through fundamental lower bounds on position accuracy and MAC delay for arbitrary finite networks. Results show that the traditional ways to increase accuracy (e.g., increasing the number of anchors or the transmission power) as well as inter-node cooperation may lead to large MAC delays. We evaluate one method to mitigate these delays

    On the Trade-Off Between Accuracy and Delay in Cooperative UWB Localization: Performance Bounds and Scaling Laws

    Get PDF
    Ultra-wide bandwidth (UWB) systems allow for accurate positioning in environments where global navigation satellite systems may fail, especially when complemented with cooperative processing. While cooperative UWB has led to centimeter-level accuracies, the communication overhead is often neglected. We quantify how accuracy and delay trade off in a wide variety of operation conditions. We also derive the asymptotic scaling of accuracy and delay, indicating that, in some conditions, standard cooperation offers the worst possible tradeoff. Both avenues lead to the same conclusion: indiscriminately targeting increased accuracy incurs a significant delay penalty. Simple countermeasures can be taken to reduce this penalty and obtain a meaningful accuracy/delay trade-off
    corecore