8 research outputs found

    Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

    Get PDF
    We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low-dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representation of the test posteriors using this dictionary enables projection to the space of training data. Relying on the fact that the intrinsic dimensions of the posterior subspaces are indeed very small and the matrix of all posteriors belonging to a class has a very low rank, we demonstrate how low-dimensional structures enable further enhancement of the posteriors and rectify the spurious errors due to mismatch conditions. The enhanced acoustic modeling method leads to improvements in continuous speech recognition task using hybrid DNN-HMM (hidden Markov model) framework in both clean and noisy conditions, where upto 15.4% relative reduction in word error rate (WER) is achieved

    Low-rank and Sparse Soft Targets to Learn Better DNN Acoustic Models

    Full text link
    Conventional deep neural networks (DNN) for speech acoustic modeling rely on Gaussian mixture models (GMM) and hidden Markov model (HMM) to obtain binary class labels as the targets for DNN training. Subword classes in speech recognition systems correspond to context-dependent tied states or senones. The present work addresses some limitations of GMM-HMM senone alignments for DNN training. We hypothesize that the senone probabilities obtained from a DNN trained with binary labels can provide more accurate targets to learn better acoustic models. However, DNN outputs bear inaccuracies which are exhibited as high dimensional unstructured noise, whereas the informative components are structured and low-dimensional. We exploit principle component analysis (PCA) and sparse coding to characterize the senone subspaces. Enhanced probabilities obtained from low-rank and sparse reconstructions are used as soft-targets for DNN acoustic modeling, that also enables training with untranscribed data. Experiments conducted on AMI corpus shows 4.6% relative reduction in word error rate

    Redundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection

    Get PDF
    State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classification system. One key property of the posterior representations is that they admit a highly effective hashing strategy that enables indexing the large archive in divisions for reducing the search complexity. Moreover, posterior indexing leads to a compressed representation and enables pronunciation dewarping and partial detection with no need for DTW. We exploit these characteristics of the posterior space in the context of redundant hash addressing for query-by-example spoken term detection (QbE-STD). We evaluate the QbE-STD system on AMI corpus and demonstrate that tremendous speedup and superior accuracy is achieved compared to the state-of-the-art pattern matching and DTW solutions. The system has great potential to enable massively large scale query detection

    Subspace Detection of DNN Posterior Probabilities via Sparse Representation for Query by Example Spoken Term Detection

    Get PDF
    We cast the query by example spoken term detection (QbE-STD) problem as subspace detection where query and background subspaces are modeled as union of low-dimensional subspaces. The speech exemplars used for subspace modeling are class-conditional posterior probabilities estimated using deep neural network (DNN). The query and background training exemplars are exploited to model the underlying low-dimensional subspaces through dictionary learning for sparse representation. Given the dictionaries characterizing the query and background subspaces, QbE-STD is performed based on the ratio of the two corresponding sparse representation reconstruction errors. The proposed subspace detection method can be formulated as the generalized likelihood ratio test for composite hypothesis testing. The experimental evaluation demonstrate that the proposed method is able to detect the query given a single example and performs significantly better than a highly competitive QbE-STD baseline system based on template matching

    Sparse and Low-rank Modeling for Automatic Speech Recognition

    Get PDF
    This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that whenever a speech signal is measured in a high-dimensional feature space, the true class information is embedded in low-dimensional subspaces whereas noise is scattered as random high-dimensional erroneous estimations in the features. In this context, the contribution of this thesis is twofold: (i) identify sparse and low-rank modeling approaches as excellent tools for extracting the class-specific low-dimensional subspaces in speech features, and (ii) employ these tools under novel ASR frameworks to enrich the acoustic information present in the speech features towards the goal of improving ASR. Techniques developed in this thesis focus on deep neural network (DNN) based posterior features which, under the sparse and low-rank modeling approaches, unveil the underlying class-specific low-dimensional subspaces very elegantly. In this thesis, we tackle ASR tasks of varying difficulty, ranging from isolated word recognition (IWR) and connected digit recognition (CDR) to large-vocabulary continuous speech recognition (LVCSR). For IWR and CDR, we propose a novel \textit{Compressive Sensing} (CS) perspective towards ASR. Here exemplar-based speech recognition is posed as a problem of recovering sparse high-dimensional word representations from compressed low-dimensional phonetic representations. In the context of LVCSR, this thesis argues that albeit their power in representation learning, DNN based acoustic models still have room for improvement in exploiting the \textit{union of low-dimensional subspaces} structure of speech data. Therefore, this thesis proposes to enhance DNN posteriors by projecting them onto the manifolds of the underlying classes using principal component analysis (PCA) or compressive sensing based dictionaries. Projected posteriors are shown to be more accurate training targets for learning better acoustic models, resulting in improved ASR performance. The proposed approach is evaluated on both close-talk and far-field conditions, confirming the importance of sparse and low-rank modeling of speech in building a robust ASR framework. Finally, the conclusions of this thesis are further consolidated by an information theoretic analysis approach which explicitly quantifies the contribution of proposed techniques in improving ASR

    Low-Rank Representation For Enhanced Deep Neural Network Acoustic Models

    Get PDF
    Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DNN) to estimate class-conditional posterior probabilities. The posterior probabilities are used for acoustic modeling in hidden Markov models (HMM), and form a hybrid DNN-HMM which is now the leading edge approach to solve ASR problems. The present work builds upon the hypothesis that the optimal acoustic models are sparse and lie on multiple low-rank probability subspaces. Hence, the main goal of this Master project aimed at investigating different ways to restructure the DNN outputs using low-rank representation. Exploiting a large number of training posterior vectors, the underlying low-dimensional subspace can be identified, and low-rank decomposition enables separation of the “optimal” posteriors from the spurious (unstructured) uncertainties at the DNN output. Experiments demonstrate that low-rank representation can enhance posterior probability estimation, and lead to higher ASR accuracy. The posteriors are grouped according to their subspace similarities, and structured through low-rank decomposition. Furthermore, a novel hashing technique is proposed exploiting the low-rank property of posterior subspaces that enables fast search in the space of posterior exemplars
    corecore