3,291 research outputs found

    Image Parsing with a Wide Range of Classes and Scene-Level Context

    Full text link
    This paper presents a nonparametric scene parsing approach that improves the overall accuracy, as well as the coverage of foreground classes in scene images. We first improve the label likelihood estimates at superpixels by merging likelihood scores from different probabilistic classifiers. This boosts the classification performance and enriches the representation of less-represented classes. Our second contribution consists of incorporating semantic context in the parsing process through global label costs. Our method does not rely on image retrieval sets but rather assigns a global likelihood estimate to each label, which is plugged into the overall energy function. We evaluate our system on two large-scale datasets, SIFTflow and LMSun. We achieve state-of-the-art performance on the SIFTflow dataset and near-record results on LMSun.Comment: Published at CVPR 2015, Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference o

    Auto-Encoding Scene Graphs for Image Captioning

    Full text link
    We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoder-decoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation `person on bike', it is natural to replace `on' with `ride' and infer `person riding bike on a road' even the `road' is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph --- a directed graph (G\mathcal{G}) where an object node is connected by adjective nodes and relationship nodes --- to represent the complex structural layout of both image (I\mathcal{I}) and sentence (S\mathcal{S}). In the textual domain, we use SGAE to learn a dictionary (D\mathcal{D}) that helps to reconstruct sentences in the S→G→D→S\mathcal{S}\rightarrow \mathcal{G} \rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline, where D\mathcal{D} encodes the desired language prior; in the vision-language domain, we use the shared D\mathcal{D} to guide the encoder-decoder in the I→G→D→S\mathcal{I}\rightarrow \mathcal{G}\rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-the-art 127.8127.8 CIDEr-D on the Karpathy split, and a competitive 125.5125.5 CIDEr-D (c40) on the official server even compared to other ensemble models

    Bringing Background into the Foreground: Making All Classes Equal in Weakly-supervised Video Semantic Segmentation

    Get PDF
    Pixel-level annotations are expensive and time-consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recent years have seen great progress in weakly-supervised semantic segmentation, whether from a single image or from videos. However, most existing methods are designed to handle a single background class. In practical applications, such as autonomous navigation, it is often crucial to reason about multiple background classes. In this paper, we introduce an approach to doing so by making use of classifier heatmaps. We then develop a two-stream deep architecture that jointly leverages appearance and motion, and design a loss based on our heatmaps to train it. Our experiments demonstrate the benefits of our classifier heatmaps and of our two-stream architecture on challenging urban scene datasets and on the YouTube-Objects benchmark, where we obtain state-of-the-art results.Comment: 11 pages, 4 figures, 7 tables, Accepted in ICCV 201

    ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompetent to extract informative representation for real images; 2) there is a distribution difference between synthetic and real data, which is also known as the domain adaptation problem. To this end, we propose a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data. First, we propose a target guided distillation approach to learn the real image style, which is achieved by training the segmentation model to imitate a pretrained real style model using real images. Second, we further take advantage of the intrinsic spatial structure presented in urban scene images, and propose a spatial-aware adaptation scheme to effectively align the distribution of two domains. These two modules can be readily integrated with existing state-of-the-art semantic segmentation networks to improve their generalizability when adapting from synthetic to real urban scenes. We evaluate the proposed method on Cityscapes dataset by adapting from GTAV and SYNTHIA datasets, where the results demonstrate the effectiveness of our method.Comment: Add experiments on SYNTHIA, CVPR 2018 camera-ready versio
    • …
    corecore