10,116 research outputs found

    Pilot Beam Sequence Design for Channel Estimation in Millimeter-Wave MIMO Systems: A POMDP Framework

    Full text link
    In this paper, adaptive pilot beam sequence design for channel estimation in large millimeter-wave (mmWave) MIMO systems is considered. By exploiting the sparsity of mmWave MIMO channels with the virtual channel representation and imposing a Markovian random walk assumption on the physical movement of the line-of-sight (LOS) and reflection clusters, it is shown that the sparse channel estimation problem in large mmWave MIMO systems reduces to a sequential detection problem that finds the locations and values of the non-zero-valued bins in a two-dimensional rectangular grid, and the optimal adaptive pilot design problem can be cast into the framework of a partially observable Markov decision process (POMDP). Under the POMDP framework, an optimal adaptive pilot beam sequence design method is obtained to maximize the accumulated transmission data rate for a given period of time. Numerical results are provided to validate our pilot signal design method and they show that the proposed method yields good performance.Comment: 6 pages, 6 figures, submitted to IEEE ICC 201

    Probabilistic Bag-Of-Hyperlinks Model for Entity Linking

    Full text link
    Many fundamental problems in natural language processing rely on determining what entities appear in a given text. Commonly referenced as entity linking, this step is a fundamental component of many NLP tasks such as text understanding, automatic summarization, semantic search or machine translation. Name ambiguity, word polysemy, context dependencies and a heavy-tailed distribution of entities contribute to the complexity of this problem. We here propose a probabilistic approach that makes use of an effective graphical model to perform collective entity disambiguation. Input mentions (i.e.,~linkable token spans) are disambiguated jointly across an entire document by combining a document-level prior of entity co-occurrences with local information captured from mentions and their surrounding context. The model is based on simple sufficient statistics extracted from data, thus relying on few parameters to be learned. Our method does not require extensive feature engineering, nor an expensive training procedure. We use loopy belief propagation to perform approximate inference. The low complexity of our model makes this step sufficiently fast for real-time usage. We demonstrate the accuracy of our approach on a wide range of benchmark datasets, showing that it matches, and in many cases outperforms, existing state-of-the-art methods
    • …
    corecore