247 research outputs found

    SonicJoin: fast, robust and worst-case optimal

    Get PDF
    The establishment of the AGM bound on the size of intermediate results of natural join queries has led to the development of several so-called worst-case join algorithms. These algorithms provably produce intermediate results that are (asymptotically) no larger than the final result of the join. The most notable ones are the Recursive Join, its successor, the Generic Join and the Leapfrog-Trie-Join. While algorithmically efficient, however, all of these algorithms require the availability of index structures that allow tuple lookups using the prefix of a key. Key-prefix-lookups in relational database systems are commonly supported by tree-based index structures since hash-based indices only support full-key lookups. In this paper, we study a wide variety of main-memory-oriented index structures that support key-prefix-lookups with a specific focus on supporting the Generic Join. Based on that study, we develop a novel, best-of-breed index structure called Sonic that combines the fast build and point lookup properties of hashtables with the prefix-lookups capabilities of trees and tries. To evaluate the performance of a variety of indices for worst-case optimal joins in a modern code-generating DBMS, we leveraged flexible, compile-time metaprogramming features to build a framework that creates highly efficient code, interweaving (at a microarchitectural level) a generic join implementation with any appropriate index structure. We demonstrate experimentally that in that framework, Sonic outperforms the fastest existing approaches by up to 2.5 times when supporting the Generic Join algorithm

    General Course Catalog [2022/23 academic year]

    Get PDF
    General Course Catalog, 2022/23 academic yearhttps://repository.stcloudstate.edu/undergencat/1134/thumbnail.jp

    Bibliographic Control in the Digital Ecosystem

    Get PDF
    With the contributions of international experts, the book aims to explore the new boundaries of universal bibliographic control. Bibliographic control is radically changing because the bibliographic universe is radically changing: resources, agents, technologies, standards and practices. Among the main topics addressed: library cooperation networks; legal deposit; national bibliographies; new tools and standards (IFLA LRM, RDA, BIBFRAME); authority control and new alliances (Wikidata, Wikibase, Identifiers); new ways of indexing resources (artificial intelligence); institutional repositories; new book supply chain; “discoverability” in the IIIF digital ecosystem; role of thesauri and ontologies in the digital ecosystem; bibliographic control and search engines

    Actas del XXIV Workshop de Investigadores en Ciencias de la Computación: WICC 2022

    Get PDF
    Compilación de las ponencias presentadas en el XXIV Workshop de Investigadores en Ciencias de la Computación (WICC), llevado a cabo en Mendoza en abril de 2022.Red de Universidades con Carreras en Informátic

    Improvement of production processes by measuring

    Get PDF
    The purpose of the thesis was to find out how the production processes of a company that manufactures medical devices can be improved by measuring. Unambiguity, usefulness, and ease of use were important features of the indicators for the company. These goals were answered with the following research questions: which of the company’s functions are significant for improving production processes, what important indicators are available for the significant functions, and which important indicators can be reported automatically. The research material was compiled by literature review and observation. The literature review presented background theory of research methods, economical manufacturing, management information systems, and databases. Information on the company's production processes, information systems and the indicators in use was collected through observation. The research material was analyzed by correlation analysis, thematic analysis, and classification. Correlation analysis was used to determine which departments and functions are relevant for improving production processes. Correlation analysis was also used to find causal links between existing indicators and their benefits in order to find new indicators for the company and automation opportunities for reporting the indicators. Thematic analysis examined the relevance of all the indicators found at a general level. Finally, classification was used to examine the relevance of the indicators to the company's strategy. The study found that the company’s most significant functions in improving production processes are quality assurance, production, and maintenance and technology development. A total of 30 important indicators were discovered, of which 24 were found to be suitable for automated reporting. The resulting indicators were found to be reliable at three different levels: the reliability of the data sources, the general relevance, and the relevance to the company's strategy. Six of the indicators found were highlighted in terms of general relevance and ten in terms of business strategy. Of all the indicators found, OEE and inventory turnover, which were not yet used by the company, were particularly prominent in terms of general relevance. The most relevant indicators for the company's strategy were energy efficiency, resolved CAPA cases in relation to all cases, production profit, and net profit or loss on investment. It was also seen as useful for the strategy to derive efficiency indices from the above-mentioned indicators and the costs of each significant function, so that the efficiency of each function can be measured in a comparable way

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance

    B!SON: A Tool for Open Access Journal Recommendation

    Get PDF
    Finding a suitable open access journal to publish scientific work is a complex task: Researchers have to navigate a constantly growing number of journals, institutional agreements with publishers, funders’ conditions and the risk of Predatory Publishers. To help with these challenges, we introduce a web-based journal recommendation system called B!SON. It is developed based on a systematic requirements analysis, built on open data, gives publisher-independent recommendations and works across domains. It suggests open access journals based on title, abstract and references provided by the user. The recommendation quality has been evaluated using a large test set of 10,000 articles. Development by two German scientific libraries ensures the longevity of the project

    Novel Perspectives for the Management of Multilingual and Multialphabetic Heritages through Automatic Knowledge Extraction: The DigitalMaktaba Approach

    Get PDF
    The linguistic and social impact of multiculturalism can no longer be neglected in any sector, creating the urgent need of creating systems and procedures for managing and sharing cultural heritages in both supranational and multi-literate contexts. In order to achieve this goal, text sensing appears to be one of the most crucial research areas. The long-term objective of the DigitalMaktaba project, born from interdisciplinary collaboration between computer scientists, historians, librarians, engineers and linguists, is to establish procedures for the creation, management and cataloguing of archival heritage in non-Latin alphabets. In this paper, we discuss the currently ongoing design of an innovative workflow and tool in the area of text sensing, for the automatic extraction of knowledge and cataloguing of documents written in non-Latin languages (Arabic, Persian and Azerbaijani). The current prototype leverages different OCR, text processing and information extraction techniques in order to provide both a highly accurate extracted text and rich metadata content (including automatically identified cataloguing metadata), overcoming typical limitations of current state of the art approaches. The initial tests provide promising results. The paper includes a discussion of future steps (e.g., AI-based techniques further leveraging the extracted data/metadata and making the system learn from user feedback) and of the many foreseen advantages of this research, both from a technical and a broader cultural-preservation and sharing point of view

    Transactional and analytical data management on persistent memory

    Get PDF
    Die zunehmende Anzahl von Smart-Geräten und Sensoren, aber auch die sozialen Medien lassen das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen. Gleichzeitig müssen viele Anwendungen Daten persistent speichern oder sogar strenge Transaktionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit ihren einzigartigen Eigenschaften scheint ein natürlicher Anwärter zu sein, um diesen Anforderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, günstiger und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar. Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den Anforderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundlegenden Arbeitsweise von und mit PMem, konzentrieren wir uns primär auf drei Aspekte der Datenverwaltung. Zunächst zerlegen wir mehrere persistente Daten- und Indexstrukturen in ihre zugrundeliegenden Entwurfsprimitive, um Abwägungen für verschiedene Zugriffsmuster aufzuzeigen. So können wir ihre besten Anwendungsfälle und Schwachstellen, aber auch allgemeine Erkenntnisse über das Entwerfen von PMem-basierten Datenstrukturen ermitteln. Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen und eine effiziente Abfrageausführung auf beliebigen Attributen ermöglichen. Während der erste Ansatz eine verknüpfte Liste von mehrdimensionalen gruppierten Blöcken verwendet, handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zustandsverwaltung verbessert werden können. Dabei schlagen wir ein neuartiges Transactional Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenläufigkeitsprotokollen vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage für die Entwicklung noch ausgereifterer PMem-fähiger Systeme bilden. Gleichzeitig zeigen sie, wie Datenverwaltungsaufgaben PMem ausnutzen können, indem sie neue Anwendungsgebiete erschließen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die Codekomplexität vereinfachen sowie die ökonomischen und ökologischen Kosten reduzieren.The increasing number of smart devices and sensors, but also social media are causing the volume of data and thus the demanded processing speed to grow steadily. At the same time, many applications need to store data persistently or even comply with strict transactional guarantees. The novel storage technology Persistent Memory (PMem), with its unique properties, seems to be a natural candidate to meet these requirements efficiently. Compared to DRAM, it is more scalable, less expensive, and durable. In contrast to disks, it is significantly faster and directly addressable. Therefore, this dissertation investigates the deliberate employment of PMem to fit the needs of modern applications. After presenting the fundamental work of and with PMem, we focus primarily on three aspects of data management. First, we disassemble several persistent data and index structures into their underlying design primitives to reveal the trade-offs for various access patterns. It allows us to identify their best use cases and vulnerabilities but also to gain general insights into the design of PMem-based data structures. Second, we propose two storage layouts that target analytical workloads and enable an efficient query execution on arbitrary attributes. While the first approach employs a linked list of multi-dimensional clustered blocks that potentially span several storage layers, the second approach is a multi-dimensional index that caches nodes in DRAM. Third, we show how to improve stream and event processing systems involving transactional state management using the preceding data structures and insights. In this context, we propose a novel Transactional Stream Processing (TSP) model with appropriate consistency and concurrency protocols adapted to PMem. Together, the discussed aspects are intended to provide a foundation for developing even more sophisticated PMemenabled systems. At the same time, they show how data management tasks can take advantage of PMem by opening up new application domains, improving performance, scalability, and recovery guarantees, simplifying code complexity, plus reducing economic and environmental costs
    corecore