1,996 research outputs found

    Improved Bounds for Universal One-Bit Compressive Sensing

    Full text link
    Unlike compressive sensing where the measurement outputs are assumed to be real-valued and have infinite precision, in "one-bit compressive sensing", measurements are quantized to one bit, their signs. In this work, we show how to recover the support of sparse high-dimensional vectors in the one-bit compressive sensing framework with an asymptotically near-optimal number of measurements. We also improve the bounds on the number of measurements for approximately recovering vectors from one-bit compressive sensing measurements. Our results are universal, namely the same measurement scheme works simultaneously for all sparse vectors. Our proof of optimality for support recovery is obtained by showing an equivalence between the task of support recovery using 1-bit compressive sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page

    Efficient and Robust Compressed Sensing Using Optimized Expander Graphs

    Get PDF
    Expander graphs have been recently proposed to construct efficient compressed sensing algorithms. In particular, it has been shown that any n-dimensional vector that is k-sparse can be fully recovered using O(klog n) measurements and only O(klog n) simple recovery iterations. In this paper, we improve upon this result by considering expander graphs with expansion coefficient beyond 3/4 and show that, with the same number of measurements, only O(k) recovery iterations are required, which is a significant improvement when n is large. In fact, full recovery can be accomplished by at most 2k very simple iterations. The number of iterations can be reduced arbitrarily close to k, and the recovery algorithm can be implemented very efficiently using a simple priority queue with total recovery time O(nlog(n/k))). We also show that by tolerating a small penal- ty on the number of measurements, and not on the number of recovery iterations, one can use the efficient construction of a family of expander graphs to come up with explicit measurement matrices for this method. We compare our result with other recently developed expander-graph-based methods and argue that it compares favorably both in terms of the number of required measurements and in terms of the time complexity and the simplicity of recovery. Finally, we will show how our analysis extends to give a robust algorithm that finds the position and sign of the k significant elements of an almost k-sparse signal and then, using very simple optimization techniques, finds a k-sparse signal which is close to the best k-term approximation of the original signal

    Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

    Full text link
    Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as {provably} good measurement matrices for compressed sensing under 1\ell_1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of 0\ell_0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy.Comment: 12 pages, 11 figure

    Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n^3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expander-graphs-based measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method

    Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing

    Get PDF
    We introduce a new class of measurement matrices for compressed sensing, using low order summaries over binary sequences of a given length. We prove recovery guarantees for three reconstruction algorithms using the proposed measurements, including 1\ell_1 minimization and two combinatorial methods. In particular, one of the algorithms recovers kk-sparse vectors of length NN in sublinear time poly(klogN)\text{poly}(k\log{N}), and requires at most Ω(klogNloglogN)\Omega(k\log{N}\log\log{N}) measurements. The empirical oversampling constant of the algorithm is significantly better than existing sublinear recovery algorithms such as Chaining Pursuit and Sudocodes. In particular, for 103N10810^3\leq N\leq 10^8 and k=100k=100, the oversampling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions, and the fast recovery scheme can be used in a number of practical applications such as market basket analysis, and real time compressed sensing implementation

    Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property

    Full text link
    Compressed Sensing aims to capture attributes of kk-sparse signals using very few measurements. In the standard Compressed Sensing paradigm, the \m\times \n measurement matrix \A is required to act as a near isometry on the set of all kk-sparse signals (Restricted Isometry Property or RIP). Although it is known that certain probabilistic processes generate \m \times \n matrices that satisfy RIP with high probability, there is no practical algorithm for verifying whether a given sensing matrix \A has this property, crucial for the feasibility of the standard recovery algorithms. In contrast this paper provides simple criteria that guarantee that a deterministic sensing matrix satisfying these criteria acts as a near isometry on an overwhelming majority of kk-sparse signals; in particular, most such signals have a unique representation in the measurement domain. Probability still plays a critical role, but it enters the signal model rather than the construction of the sensing matrix. We require the columns of the sensing matrix to form a group under pointwise multiplication. The construction allows recovery methods for which the expected performance is sub-linear in \n, and only quadratic in \m; the focus on expected performance is more typical of mainstream signal processing than the worst-case analysis that prevails in standard Compressed Sensing. Our framework encompasses many families of deterministic sensing matrices, including those formed from discrete chirps, Delsarte-Goethals codes, and extended BCH codes.Comment: 16 Pages, 2 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin
    corecore