3,396 research outputs found

    Broadband converging plasmon resonance at a conical nanotip

    Get PDF
    We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smooth nano-structures. The theory also explicitly connects the optimal angles and resonant optical frequencies to the material permittivities, with a specific optimum half angle that depends only on the real permittivity for high-permittivity and low-loss materials

    Cavity and Wake Flows

    Get PDF
    The phenomenon of wake formation behind a body moving through a fluid, and the associated resistance of fluids, must have been one of the oldest experiences of man. From an analytical point of view, it is also one of the most difficult problems in fluid mechanics. Rayleigh, in his 1876 paper, observed that "there is no part of hydrodynamics more perplexing to the student than that which treats of the resistance of fluids." This insight of Rayleigh is so penetrating that the march of time has virtually left no mark on its validity even today, and likely still for some time to come. The first major step concerning the resistance of fluids was made over a century ago when Kirchhoff (1869) introduced an idealized inviscid-flow model with free streamlines (or surfaces of discontinuity) and employed (for steady, plane flows) the ingenious conformal-mapping technique that had been invented a short time earlier by Helmholtz (1868) for treating two-dimensional jets formed by free streamlines. This pioneering work offered an alternative to the classical paradox of D’Alembert (or the absence of resistance) and laid the foundation of the free-streamline theory. We appreciate the profound insight of these celebrated works even more when we consider that their basic idea about wakes and jets, based on a construction with surfaces of discontinuity, was formed decades before laminar and turbulent flows were distinguished by Reynolds (1883), and long before the fundamental concepts of boundary-layer theory and flow separation were established by Prandtl (1904a). However, there have been some questions raised in the past, and still today, about the validity of the Kirchhoff flow for the approximate calculation of resistance. Historically there is little doubt that in constructing the flow model Kirchhoff was thinking of the wake in a single-phase fluid, and not at all of the vapor-gas cavity in a liquid; hence the arguments, both for and against the Kirchhoff flow, should be viewed in this light. On this basis, an important observation was made by Sir William Thomson, later Lord Kelvin (see Rayleigh 1876) "that motions involving a surface of separation are unstable" (we infer that instability here includes the viscous effect). Regarding this comment Rayleigh asked "whether the calculations of resistance are materially affected by this circumstance as the pressures experienced must be nearly independent of what happens at some distance in the rear of the obstacle, where the instability would first begin to manifest itself." This discussion undoubtedly widened the original scope, brought the wake analysis closer to reality, and hence should influence the course of further developments. An expanded discussion essentially along these lines was given by Levi-Civita (1907) and was included in the survey by Goldstein (1969). Another point of fundamental importance is whether the Kirchhoff flow is the only correct Euler (or outer) limit of the Navier-Stokes solution to steady flow at high Reynolds numbers. If so, then a second difficulty arises, a consequence of the following argument: We know that the width of the Kirchhoff wake grows parabolically with the downstream distance x, at a rate independent of the (kinematic) viscosity u. If Prandtl’s boundary-layer theory is then applied to smooth out the discontinuity (i.e. the vortex sheet) between the wake and the potential flow, one obtains a laminar shear layer whose thickness grows like (ux/U)^-1/2 in a free stream of velocity U. Hence, for sufficiently small u/U the shear layers do not meet, so that the wake bubble remains infinitely long at a finite Reynolds number, a result not supported by experience. (For more details see Lagerstrom 1964, before p. 106, 131; Kaplun 1967, Part II.) The weaknesses in the above argument appear to lie in the two primary suppositions that, first, the free shear layer enveloping the wake would remain stable indefinitely, and second (perhaps a less serious one), the boundary-layer approximation would be valid along the infinitely long wake boundary. Reattachment of two turbulent shear layers, for instance, is possible since their thickness grows linearly with x. By and large, various criticisms, of the Kirchhoff flow model have led to constructive refinements of the free-streamline theory rather than to a weakening of the foundation of the theory as a valuable idealization. The major development in this direction has been based on the observation that the wake bubble is finite in size at high Reynolds numbers. (The wake bubble, or the near-wake, means, in the ordinary physical sense, the region of closed streamlines behind the body as characterized by a constant or nearly constant pressure.) To facilitate the mathematical analysis of flows with a finite wake bubble, a number of potential-flow models have been introduced to give the near-wake a definite configuration as an approximation to the inviscid outer flow. These theoretical models will be discussed explicitly later. It suffices to note here that all these models, even though artificial to various degrees, are aimed at admitting the near-wake pressure coefficient as a single free parameter of the flow, thus providing a satisfactory solution to the state of motion in the near part of the wake attached to the body. On the whole, their utility is established by their capability of bringing the results of potential theory of inviscid flows into better agreement with experimental measurements in fluids of small viscosity. The cavity flow also has a long, active history. Already in 1754, Euler, in connection with his study of turbines, realized that vapor cavitation may likely occur in a water stream at high speeds. In investigating the cause of the racing of a ship propeller, Reynolds (1873) observed the phenomenon of cavitation at the propeller blades. After the turn of this century, numerous investigations of cavitation and cavity flows were stimulated by studies of ship propellers, turbomachinery, hydrofoils, and other engineering developments. Important concepts in this subject began to appear about fifty years ago. In an extensive study of the cavitation of water turbines, Thoma (1926) introduced the cavitation number (the underpressure coefficient of the vapor phase) as the principal similarity parameter, which has ever since played a central role in small-bubble cavitation as well as in well-developed cavity flows. Applications of free-streamline theory to finite-cavity flows have attracted much mathematical interest and also provided valuable information for engineering purposes. Although the wake interpretation of the flow models used to be standard, experimental verifications generally indicate that the theoretical predictions by these finite-wake models are satisfactory to the same degree for both wake and cavity flows. This fact, however, has not been widely recognized and some confusion still exists. As a possible explanation, it is quite plausible that even for the wake in a single-phase flow, the kinetic energy of the viscous flow within the wake bubble is small, thus keeping the pressure almost unchanged throughout. Although this review gives more emphasis to cavity flows, several basic aspects of cavity and wake flows can be effectively discussed together since they are found to have many important features in common, or in close analogy. This is in spite of relatively minor differences that arise from new physical effects, such as gravity, surface tension, thermodynamics of phase transition, density ratio and viscosity ratio of the two phases, etc., that are intrinsic only to cavity flows. Based on this approach, attempts will be made to give a brief survey of the physical background, a general discussion of the free-streamline theory, some comments on the problems and issues of current interest, and to point out some basic problems yet to be resolved. In view of the vast scope of this subject and the voluminous literature, efforts will not be aimed at completeness, but rather on selective interests. Extensive review of the literature up to the 1960s may be found in recent expositions by Birkhoff & Zarantonello (1957), Gilbarg (1960), Gurevich (1961), Wehausen (1965), Sedov (1966), Wu (1968), Robertson & Wislicenus (1969), and (1961)

    Competition of hydrophobic and Coulombic interactions between nano-sized solutes

    Full text link
    The solvation of charged, nanometer-sized spherical solutes in water, and the effective, solvent-induced force between two such solutes are investigated by constant temperature and pressure Molecular Dynamics simulations of model solutes carrying various charge patterns. The results for neutral solutes agree well with earlier findings, and with predictions of simple macroscopic considerations: substantial hydrophobic attraction may be traced back to strong depletion (``drying'') of the solvent between the solutes. This hydrophobic attraction is strongly reduced when the solutes are uniformly charged, and the total force becomes repulsive at sufficiently high charge; there is a significant asymmetry between anionic and cationic solute pairs, the latter experiencing a lesser hydrophobic attraction. The situation becomes more complex when the solutes carry discrete (rather than uniform) charge patterns. Due to antagonistic effects of the resulting hydrophilic and hydrophobic ``patches'' on the solvent molecules, water is once more significantly depleted around the solutes, and the effective interaction reverts to being mainly attractive, despite the direct electrostatic repulsion between solutes. Examination of a highly coarse-grained configurational probability density shows that the relative orientation of the two solutes is very different in explicit solvent, compared to the prediction of the crude implicit solvent representation. The present study strongly suggests that a realistic modeling of the charge distribution on the surface of globular proteins, as well as the molecular treatment of water are essential prerequisites for any reliable study of protein aggregation.Comment: 20 pages, 25 figure

    Fluctuating surface-current formulation of radiative heat transfer: theory and applications

    Full text link
    We describe a novel fluctuating-surface current formulation of radiative heat transfer between bodies of arbitrary shape that exploits efficient and sophisticated techniques from the surface-integral-equation formulation of classical electromagnetic scattering. Unlike previous approaches to non-equilibrium fluctuations that involve scattering matrices---relating "incoming" and "outgoing" waves from each body---our approach is formulated in terms of "unknown" surface currents, laying at the surfaces of the bodies, that need not satisfy any wave equation. We show that our formulation can be applied as a spectral method to obtain fast-converging semi-analytical formulas in high-symmetry geometries using specialized spectral bases that conform to the surfaces of the bodies (e.g. Fourier series for planar bodies or spherical harmonics for spherical bodies), and can also be employed as a numerical method by exploiting the generality of surface meshes/grids to obtain results in more complicated geometries (e.g. interleaved bodies as well as bodies with sharp corners). In particular, our formalism allows direct application of the boundary-element method, a robust and powerful numerical implementation of the surface-integral formulation of classical electromagnetism, which we use to obtain results in new geometries, including the heat transfer between finite slabs, cylinders, and cones

    Control of vortical separation on conical bodies

    Get PDF
    In a variety of aeronautical applications, the flow around conical bodies at incidence is of interest. Such applications include, but are not limited to, highly maneuverable aircraft with delta wings, the aerospace plane and nose portions of spike inlets. The theoretical model used has three parts. First, the single line vortex model is used within the framework of slender body theory, to compute the outer inviscid field for specified separation lines. Next, the three dimensional boundary layer is represented by a momentum equation for the cross flow, analogous to that for a plane boundary layer; a von Karman Pohlhausen approximation is applied to solve this equation. The cross flow separation for both laminar and turbulent layers is determined by matching the pressure at the upper and lower separation points. This iterative procedure yields a unique solution for the separation lines and consequently for the position of the vortices and the vortex lift on the body. Lastly, control of separation is achieved by blowing tangentially from a slot located along a cone generator. It is found that for very small blowing coefficients, the separation can be postponed or suppressedy completely

    The Effect of Step Load Moving on the Surface of a Cylindrical Cavity Using Neural Networks

    Get PDF
    Potential functions and Fourier series method in the cylindrical coordinate system are employed to solve the problem of moving loads on the surface of a cylindrical bore in an infinite elastic and isotropic medium. The steady state dynamic equations of medium are uncoupled by applying potential functions. The medium responses are obtained by using an appropriate numerical method of Laplace transform inversion. The solution has an integral form; therefore, a feedforward backpropagation neural network is designed and trained using the response evaluated numerically in a finite set of random points to approximate stress and displacement components in the medium. It is shown that because of the super seismic nature of the problem, two mach cones are formed and opened toward the rear of the front in the medium
    • …
    corecore