3,726 research outputs found

    Explicit Edge Inconsistency Evaluation Model for Color-Guided Depth Map Enhancement

    Full text link
    © 2016 IEEE. Color-guided depth enhancement is used to refine depth maps according to the assumption that the depth edges and the color edges at the corresponding locations are consistent. In methods on such low-level vision tasks, the Markov random field (MRF), including its variants, is one of the major approaches that have dominated this area for several years. However, the assumption above is not always true. To tackle the problem, the state-of-the-art solutions are to adjust the weighting coefficient inside the smoothness term of the MRF model. These methods lack an explicit evaluation model to quantitatively measure the inconsistency between the depth edge map and the color edge map, so they cannot adaptively control the efforts of the guidance from the color image for depth enhancement, leading to various defects such as texture-copy artifacts and blurring depth edges. In this paper, we propose a quantitative measurement on such inconsistency and explicitly embed it into the smoothness term. The proposed method demonstrates promising experimental results compared with the benchmark and state-of-the-art methods on the Middlebury ToF-Mark, and NYU data sets

    Integrated cosparse analysis model with explicit edge inconsistency measurement for guided depth map upsampling

    Full text link
    © 2018 SPIE and IS & T. A low-resolution depth map can be upsampled through the guidance from the registered high-resolution color image. This type of method is so-called guided depth map upsampling. Among the existing methods based on Markov random field (MRF), either data-driven or model-based prior is adopted to construct the regularization term. The data-driven prior can implicitly reveal the relation between color-depth image pair by training on external data. The model-based prior provides the anisotropic smoothness constraint guided by high-resolution color image. These types of priors can complement each other to solve the ambiguity in guided depth map upsampling. An MRF-based approach is proposed that takes both of them into account to regularize the depth map. Based on analysis sparse coding, the data-driven prior is defined by joint cosparsity on the vectors transformed from color-depth patches using the pair of learned operators. It is based on the assumption that the cosupports of such bimodal image structures computed by the operators are aligned. The edge inconsistency measurement is explicitly calculated, which is embedded into the model-based prior. It can significantly mitigate texture-copying artifacts. The experimental results on Middlebury datasets demonstrate the validity of the proposed method that outperforms seven state-of-the-art approaches

    Explicit modeling on depth-color inconsistency for color-guided depth up-sampling

    Full text link
    © 2016 IEEE. Color-guided depth up-sampling is to enhance the resolution of depth map according to the assumption that the depth discontinuity and color image edge at the corresponding location are consistent. Through all methods reported, MRF including its variants is one of major approaches, which has dominated in this area for several years. However, the assumption above is not always true. Solution usually is to adjust the weighting inside smoothness term in MRF model. But there is no any method explicitly considering the inconsistency occurring between depth discontinuity and the corresponding color edge. In this paper, we propose quantitative measurement on such inconsistency and explicitly embed it into weighting value of smoothness term. Such solution has not been reported in the literature. The improved depth up-sampling based on the proposed method is evaluated on Middlebury datasets and ToFMark datasets and demonstrate promising results

    Explicit measurement on depth-color inconsistency for depth completion

    Full text link
    © 2016 IEEE. Color-guided depth completion is to refine depth map through structure light sensing by filling missing depth structure and de-nosing. It is based on the assumption that depth discontinuity and color edge at the corresponding location are consistent. Among all proposed methods, MRF-based method including its variants is one of major approaches. However, the assumption above is not always true, which causes texture-copy and depth discontinuity blurring artifacts. The state-of-the-art solutions usually are to modify the weighting inside smoothness term of MRF model. Because there is no any method explicitly considering the inconsistency occurring between depth discontinuity and the corresponding color edge, they cannot adaptively control the effect of guidance from color image when completing depth map. In this paper, we propose quantitative measurement on such inconsistency and explicitly embed it into weighting value of smoothness term. The proposed method is evaluated on NYU Kinect datasets and demonstrates promising results

    Unsharp Mask Guided Filtering

    Get PDF
    The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering by means of an additional guidance image. Where classical guided filters transfer structures using hand-designed functions, recent guided filters have been considerably advanced through parametric learning of deep networks. The state-of-the-art leverages deep networks to estimate the two core coefficients of the guided filter. In this work, we posit that simultaneously estimating both coefficients is suboptimal, resulting in halo artifacts and structure inconsistencies. Inspired by unsharp masking, a classical technique for edge enhancement that requires only a single coefficient, we propose a new and simplified formulation of the guided filter. Our formulation enjoys a filtering prior from a low-pass filter and enables explicit structure transfer by estimating a single coefficient. Based on our proposed formulation, we introduce a successive guided filtering network, which provides multiple filtering results from a single network, allowing for a trade-off between accuracy and efficiency. Extensive ablations, comparisons and analysis show the effectiveness and efficiency of our formulation and network, resulting in state-of-the-art results across filtering tasks like upsampling, denoising, and cross-modality filtering. Code is available at \url{https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering}.Comment: IEEE Transactions on Image Processing, 202

    Unsharp Mask Guided Filtering

    Get PDF

    Deep edge map guided depth super resolution

    Get PDF
    Accurate edge reconstruction is critical for depth map super resolution (SR). Therefore, many traditional SR methods utilize edge maps to guide depth SR. However, it is difficult to predict accurate edge maps from low resolution (LR) depth maps. In this paper, we propose a deep edge map guided depth SR method, which includes an edge prediction subnetwork and an SR subnetwork. The edge prediction subnetwork takes advantage of the hierarchical representation of color and depth images to produce accurate edge maps, which promote the performance of SR subnetwork. The SR subnetwork is a disentangling cascaded network to progressively upsample SR result, where every level is made up of a weight sharing module and an adaptive module. The weight sharing module extracts the general features in different levels, while the adaptive module transfers the general features to the specific features to adapt to different degraded inputs. Quantitative and qualitative evaluations on various datasets with different magnification factors demonstrate the effectiveness and promising performance of the proposed method. In addition, we construct a benchmark dataset captured by Kinect-v2 to facilitate research on real-world depth map SR
    • …
    corecore