1,563 research outputs found

    Explaining a black-box using Deep Variational Information Bottleneck Approach

    Full text link
    Interpretable machine learning has gained much attention recently. Briefness and comprehensiveness are necessary in order to provide a large amount of information concisely when explaining a black-box decision system. However, existing interpretable machine learning methods fail to consider briefness and comprehensiveness simultaneously, leading to redundant explanations. We propose the variational information bottleneck for interpretation, VIBI, a system-agnostic interpretable method that provides a brief but comprehensive explanation. VIBI adopts an information theoretic principle, information bottleneck principle, as a criterion for finding such explanations. For each instance, VIBI selects key features that are maximally compressed about an input (briefness), and informative about a decision made by a black-box system on that input (comprehensive). We evaluate VIBI on three datasets and compare with state-of-the-art interpretable machine learning methods in terms of both interpretability and fidelity evaluated by human and quantitative metric

    An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction

    Full text link
    Decisions of complex language understanding models can be rationalized by limiting their inputs to a relevant subsequence of the original text. A rationale should be as concise as possible without significantly degrading task performance, but this balance can be difficult to achieve in practice. In this paper, we show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective. Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on ERASER benchmark tasks demonstrate significant gains over norm-minimization techniques for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples) closes the gap with a model that uses the full input.Comment: EMNLP 2020 main track accepted pape

    Advances in Variational Inference

    Full text link
    Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully used in various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions

    Information Bottleneck and its Applications in Deep Learning

    Full text link
    Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a paradigm shift in the community toward revisiting previous ideas and applications in this new framework. Ideas from IT are no exception. One of the ideas which is being revisited by many researchers in this new era, is Information Bottleneck (IB); a formulation of information extraction based on IT. The IB is promising in both analyzing and improving DNNs. The goal of this survey is to review the IB concept and demonstrate its applications in deep learning. The information theoretic nature of IB, makes it also a good candidate in showing the more general concept of how IT can be used in ML. Two important concepts are highlighted in this narrative on the subject, i) the concise and universal view that IT provides on seemingly unrelated methods of ML, demonstrated by explaining how IB relates to minimal sufficient statistics, stochastic gradient descent, and variational auto-encoders, and ii) the common technical mistakes and problems caused by applying ideas from IT, which is discussed by a careful study of some recent methods suffering from them

    Guess First to Enable Better Compression and Adversarial Robustness

    Full text link
    Machine learning models are generally vulnerable to adversarial examples, which is in contrast to the robustness of humans. In this paper, we try to leverage one of the mechanisms in human recognition and propose a bio-inspired classification framework in which model inference is conditioned on label hypothesis. We provide a class of training objectives for this framework and an information bottleneck regularizer which utilizes the advantage that label information can be discarded during inference. This framework enables better compression of the mutual information between inputs and latent representations without loss of learning capacity, at the cost of tractable inference complexity. Better compression and elimination of label information further bring better adversarial robustness without loss of natural accuracy, which is demonstrated in the experiment.Comment: Accepted by NeurIPS 2019 workshop on Information Theory and Machine Learnin

    Understanding Autoencoders with Information Theoretic Concepts

    Full text link
    Despite their great success in practical applications, there is still a lack of theoretical and systematic methods to analyze deep neural networks. In this paper, we illustrate an advanced information theoretic methodology to understand the dynamics of learning and the design of autoencoders, a special type of deep learning architectures that resembles a communication channel. By generalizing the information plane to any cost function, and inspecting the roles and dynamics of different layers using layer-wise information quantities, we emphasize the role that mutual information plays in quantifying learning from data. We further suggest and also experimentally validate, for mean square error training, three fundamental properties regarding the layer-wise flow of information and intrinsic dimensionality of the bottleneck layer, using respectively the data processing inequality and the identification of a bifurcation point in the information plane that is controlled by the given data. Our observations have a direct impact on the optimal design of autoencoders, the design of alternative feedforward training methods, and even in the problem of generalization.Comment: Paper accepted by Neural Networks. Code for estimating information quantities and drawing the information plane is available from https://drive.google.com/drive/folders/1e5sIywZfmWp4Dn0WEesb6fqQRM0DIGxZ?usp=sharin

    Restricting the Flow: Information Bottlenecks for Attribution

    Full text link
    Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBAComment: 18 pages, 12 figures, accepted at ICLR 2020 (Oral

    Adversarial Neural Pruning with Latent Vulnerability Suppression

    Full text link
    Despite the remarkable performance of deep neural networks on various computer vision tasks, they are known to be susceptible to adversarial perturbations, which makes it challenging to deploy them in real-world safety-critical applications. In this paper, we conjecture that the leading cause of adversarial vulnerability is the distortion in the latent feature space, and provide methods to suppress them effectively. Explicitly, we define \emph{vulnerability} for each latent feature and then propose a new loss for adversarial learning, \emph{Vulnerability Suppression (VS)} loss, that aims to minimize the feature-level vulnerability during training. We further propose a Bayesian framework to prune features with high vulnerability to reduce both vulnerability and loss on adversarial samples. We validate our \emph{Adversarial Neural Pruning with Vulnerability Suppression (ANP-VS)} method on multiple benchmark datasets, on which it not only obtains state-of-the-art adversarial robustness but also improves the performance on clean examples, using only a fraction of the parameters used by the full network. Further qualitative analysis suggests that the improvements come from the suppression of feature-level vulnerability.Comment: Accepted to ICML 2020. Code available at https://github.com/divyam3897/ANP_V

    Explainable Machine Learning for Scientific Insights and Discoveries

    Full text link
    Machine learning methods have been remarkably successful for a wide range of application areas in the extraction of essential information from data. An exciting and relatively recent development is the uptake of machine learning in the natural sciences, where the major goal is to obtain novel scientific insights and discoveries from observational or simulated data. A prerequisite for obtaining a scientific outcome is domain knowledge, which is needed to gain explainability, but also to enhance scientific consistency. In this article we review explainable machine learning in view of applications in the natural sciences and discuss three core elements which we identified as relevant in this context: transparency, interpretability, and explainability. With respect to these core elements, we provide a survey of recent scientific works that incorporate machine learning and the way that explainable machine learning is used in combination with domain knowledge from the application areas

    Excessive Invariance Causes Adversarial Vulnerability

    Full text link
    Despite their impressive performance, deep neural networks exhibit striking failures on out-of-distribution inputs. One core idea of adversarial example research is to reveal neural network errors under such distribution shifts. We decompose these errors into two complementary sources: sensitivity and invariance. We show deep networks are not only too sensitive to task-irrelevant changes of their input, as is well-known from epsilon-adversarial examples, but are also too invariant to a wide range of task-relevant changes, thus making vast regions in input space vulnerable to adversarial attacks. We show such excessive invariance occurs across various tasks and architecture types. On MNIST and ImageNet one can manipulate the class-specific content of almost any image without changing the hidden activations. We identify an insufficiency of the standard cross-entropy loss as a reason for these failures. Further, we extend this objective based on an information-theoretic analysis so it encourages the model to consider all task-dependent features in its decision. This provides the first approach tailored explicitly to overcome excessive invariance and resulting vulnerabilities
    • …
    corecore