19,605 research outputs found
Visualizations for an Explainable Planning Agent
In this paper, we report on the visualization capabilities of an Explainable
AI Planning (XAIP) agent that can support human in the loop decision making.
Imposing transparency and explainability requirements on such agents is
especially important in order to establish trust and common ground with the
end-to-end automated planning system. Visualizing the agent's internal
decision-making processes is a crucial step towards achieving this. This may
include externalizing the "brain" of the agent -- starting from its sensory
inputs, to progressively higher order decisions made by it in order to drive
its planning components. We also show how the planner can bootstrap on the
latest techniques in explainable planning to cast plan visualization as a plan
explanation problem, and thus provide concise model-based visualization of its
plans. We demonstrate these functionalities in the context of the automated
planning components of a smart assistant in an instrumented meeting space.Comment: PREVIOUSLY Mr. Jones -- Towards a Proactive Smart Room Orchestrator
(appeared in AAAI 2017 Fall Symposium on Human-Agent Groups
An Interpretable Machine Vision Approach to Human Activity Recognition using Photoplethysmograph Sensor Data
The current gold standard for human activity recognition (HAR) is based on
the use of cameras. However, the poor scalability of camera systems renders
them impractical in pursuit of the goal of wider adoption of HAR in mobile
computing contexts. Consequently, researchers instead rely on wearable sensors
and in particular inertial sensors. A particularly prevalent wearable is the
smart watch which due to its integrated inertial and optical sensing
capabilities holds great potential for realising better HAR in a non-obtrusive
way. This paper seeks to simplify the wearable approach to HAR through
determining if the wrist-mounted optical sensor alone typically found in a
smartwatch or similar device can be used as a useful source of data for
activity recognition. The approach has the potential to eliminate the need for
the inertial sensing element which would in turn reduce the cost of and
complexity of smartwatches and fitness trackers. This could potentially
commoditise the hardware requirements for HAR while retaining the functionality
of both heart rate monitoring and activity capture all from a single optical
sensor. Our approach relies on the adoption of machine vision for activity
recognition based on suitably scaled plots of the optical signals. We take this
approach so as to produce classifications that are easily explainable and
interpretable by non-technical users. More specifically, images of
photoplethysmography signal time series are used to retrain the penultimate
layer of a convolutional neural network which has initially been trained on the
ImageNet database. We then use the 2048 dimensional features from the
penultimate layer as input to a support vector machine. Results from the
experiment yielded an average classification accuracy of 92.3%. This result
outperforms that of an optical and inertial sensor combined (78%) and
illustrates the capability of HAR systems using...Comment: 26th AIAI Irish Conference on Artificial Intelligence and Cognitive
Scienc
Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks
Without any doubt, Machine Learning (ML) will be an important driver of
future communications due to its foreseen performance when applied to complex
problems. However, the application of ML to networking systems raises concerns
among network operators and other stakeholders, especially regarding
trustworthiness and reliability. In this paper, we devise the role of network
simulators for bridging the gap between ML and communications systems. In
particular, we present an architectural integration of simulators in ML-aware
networks for training, testing, and validating ML models before being applied
to the operative network. Moreover, we provide insights on the main challenges
resulting from this integration, and then give hints discussing how they can be
overcome. Finally, we illustrate the integration of network simulators into
ML-assisted communications through a proof-of-concept testbed implementation of
a residential Wi-Fi network
- …
