2,344 research outputs found

    Can I Trust the Explanations? Investigating Explainable Machine Learning Methods for Monotonic Models

    Full text link
    In recent years, explainable machine learning methods have been very successful. Despite their success, most explainable machine learning methods are applied to black-box models without any domain knowledge. By incorporating domain knowledge, science-informed machine learning models have demonstrated better generalization and interpretation. But do we obtain consistent scientific explanations if we apply explainable machine learning methods to science-informed machine learning models? This question is addressed in the context of monotonic models that exhibit three different types of monotonicity. To demonstrate monotonicity, we propose three axioms. Accordingly, this study shows that when only individual monotonicity is involved, the baseline Shapley value provides good explanations; however, when strong pairwise monotonicity is involved, the Integrated gradients method provides reasonable explanations on average

    Evolutionary approaches to explainable machine learning

    Full text link
    Machine learning models are increasingly being used in critical sectors, but their black-box nature has raised concerns about accountability and trust. The field of explainable artificial intelligence (XAI) or explainable machine learning (XML) has emerged in response to the need for human understanding of these models. Evolutionary computing, as a family of powerful optimization and learning tools, has significant potential to contribute to XAI/XML. In this chapter, we provide a brief introduction to XAI/XML and review various techniques in current use for explaining machine learning models. We then focus on how evolutionary computing can be used in XAI/XML, and review some approaches which incorporate EC techniques. We also discuss some open challenges in XAI/XML and opportunities for future research in this field using EC. Our aim is to demonstrate that evolutionary computing is well-suited for addressing current problems in explainability, and to encourage further exploration of these methods to contribute to the development of more transparent, trustworthy and accountable machine learning models

    The Grammar of Interactive Explanatory Model Analysis

    Full text link
    The growing need for in-depth analysis of predictive models leads to a series of new methods for explaining their local and global properties. Which of these methods is the best? It turns out that this is an ill-posed question. One cannot sufficiently explain a black-box machine learning model using a single method that gives only one perspective. Isolated explanations are prone to misunderstanding, which inevitably leads to wrong or simplistic reasoning. This problem is known as the Rashomon effect and refers to diverse, even contradictory interpretations of the same phenomenon. Surprisingly, the majority of methods developed for explainable machine learning focus on a single aspect of the model behavior. In contrast, we showcase the problem of explainability as an interactive and sequential analysis of a model. This paper presents how different Explanatory Model Analysis (EMA) methods complement each other and why it is essential to juxtapose them together. The introduced process of Interactive EMA (IEMA) derives from the algorithmic side of explainable machine learning and aims to embrace ideas developed in cognitive sciences. We formalize the grammar of IEMA to describe potential human-model dialogues. IEMA is implemented in the human-centered framework that adopts interactivity, customizability and automation as its main traits. Combined, these methods enhance the responsible approach to predictive modeling.Comment: 17 pages, 10 figures, 3 table
    • …
    corecore