1,830 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Graphing else matters: exploiting aspect opinions and ratings in explainable graph-based recommendations

    Full text link
    The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, current recommendation methods based on graph embeddings have shown state-of-the-art performance. These methods commonly encode latent rating patterns and content features. Different from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items. Furthermore, we also provide examples of the applicability of recommendations utilizing aspect opinions as explanations in a visualization dashboard, which allows obtaining information about the most and least liked aspects of similar users obtained from the embeddings of an input graph

    CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

    Full text link
    Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user. However, this is challenging due to the huge search space, unknown destination, and sparse signals over the KG, so informative and effective guidance is needed to achieve a satisfactory recommendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which subsequently guide a path-finding process to derive reasoning paths for recommendations as fine-grained predictions. User profiles can capture prominent user behaviors from the history, and provide valuable signals about which kinds of path patterns are more likely to lead to potential items of interest for the user. To better exploit the user profiles, an improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also developed, which leverages an inventory of neural symbolic reasoning modules to effectively and efficiently find a batch of paths over a large-scale KG. We extensively experiment on four real-world benchmarks and observe substantial gains in the recommendation performance compared with state-of-the-art methods.Comment: Accepted in CIKM 202

    Dual Preference Distribution Learning for Item Recommendation

    Full text link
    Recommender systems can automatically recommend users with items that they probably like. The goal of them is to model the user-item interaction by effectively representing the users and items. Existing methods have primarily learned the user's preferences and item's features with vectorized embeddings, and modeled the user's general preferences to items by the interaction of them. In fact, users have their specific preferences to item attributes and different preferences are usually related. Therefore, exploring the fine-grained preferences as well as modeling the relationships among user's different preferences could improve the recommendation performance. Toward this end, we propose a dual preference distribution learning framework (DUPLE), which aims to jointly learn a general preference distribution and a specific preference distribution for a given user, where the former corresponds to the user's general preference to items and the latter refers to the user's specific preference to item attributes. Notably, the mean vector of each Gaussian distribution can capture the user's preferences, and the covariance matrix can learn their relationship. Moreover, we can summarize a preferred attribute profile for each user, depicting his/her preferred item attributes. We then can provide the explanation for each recommended item by checking the overlap between its attributes and the user's preferred attribute profile. Extensive quantitative and qualitative experiments on six public datasets demonstrate the effectiveness and explainability of the DUPLE method.Comment: 23 pages, 7 figures. This manuscript has been accepted by ACM Transactions on Information System

    Rating and aspect-based opinion graph embeddings for explainable recommendations

    Full text link
    The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, recent recommendation methods based on graph embeddings have shown state-of-the-art performance. In general, these methods encode latent rating patterns and content features. Differently from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Additionally, our method has the advantage of providing explanations that involve the coverage of aspect-based opinions given by users about recommended items.Comment: arXiv admin note: substantial text overlap with arXiv:2107.0322

    Faithful Path Language Modelling for Explainable Recommendation over Knowledge Graph

    Full text link
    Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED

    Explainability in Music Recommender Systems

    Full text link
    The most common way to listen to recorded music nowadays is via streaming platforms which provide access to tens of millions of tracks. To assist users in effectively browsing these large catalogs, the integration of Music Recommender Systems (MRSs) has become essential. Current real-world MRSs are often quite complex and optimized for recommendation accuracy. They combine several building blocks based on collaborative filtering and content-based recommendation. This complexity can hinder the ability to explain recommendations to end users, which is particularly important for recommendations perceived as unexpected or inappropriate. While pure recommendation performance often correlates with user satisfaction, explainability has a positive impact on other factors such as trust and forgiveness, which are ultimately essential to maintain user loyalty. In this article, we discuss how explainability can be addressed in the context of MRSs. We provide perspectives on how explainability could improve music recommendation algorithms and enhance user experience. First, we review common dimensions and goals of recommenders' explainability and in general of eXplainable Artificial Intelligence (XAI), and elaborate on the extent to which these apply -- or need to be adapted -- to the specific characteristics of music consumption and recommendation. Then, we show how explainability components can be integrated within a MRS and in what form explanations can be provided. Since the evaluation of explanation quality is decoupled from pure accuracy-based evaluation criteria, we also discuss requirements and strategies for evaluating explanations of music recommendations. Finally, we describe the current challenges for introducing explainability within a large-scale industrial music recommender system and provide research perspectives.Comment: To appear in AI Magazine, Special Topic on Recommender Systems 202
    • …
    corecore