1,601 research outputs found

    Robot Mindreading and the Problem of Trust

    Get PDF
    This paper raises three questions regarding the attribution of beliefs, desires, and intentions to robots. The first one is whether humans in fact engage in robot mindreading. If they do, this raises a second question: does robot mindreading foster trust towards robots? Both of these questions are empirical, and I show that the available evidence is insufficient to answer them. Now, if we assume that the answer to both questions is affirmative, a third and more important question arises: should developers and engineers promote robot mindreading in view of their stated goal of enhancing transparency? My worry here is that by attempting to make robots more mind-readable, they are abandoning the project of understanding automatic decision processes. Features that enhance mind-readability are prone to make the factors that determine automatic decisions even more opaque than they already are. And current strategies to eliminate opacity do not enhance mind-readability. The last part of the paper discusses different ways to analyze this apparent trade-off and suggests that a possible solution must adopt tolerable degrees of opacity that depend on pragmatic factors connected to the level of trust required for the intended uses of the robot

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System

    Explainable AI over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions

    Full text link
    Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.Comment: 29 pages, 7 figures, 2 tables. IEEE Open Journal of the Communications Society (2022

    Designing AI Support for Human Involvement in AI-assisted Decision Making: A Taxonomy of Human-AI Interactions from a Systematic Review

    Full text link
    Efforts in levering Artificial Intelligence (AI) in decision support systems have disproportionately focused on technological advancements, often overlooking the alignment between algorithmic outputs and human expectations. To address this, explainable AI promotes AI development from a more human-centered perspective. Determining what information AI should provide to aid humans is vital, however, how the information is presented, e. g., the sequence of recommendations and the solicitation of interpretations, is equally crucial. This motivates the need to more precisely study Human-AI interaction as a pivotal component of AI-based decision support. While several empirical studies have evaluated Human-AI interactions in multiple application domains in which interactions can take many forms, there is not yet a common vocabulary to describe human-AI interaction protocols. To address this gap, we describe the results of a systematic review of the AI-assisted decision making literature, analyzing 105 selected articles, which grounds the introduction of a taxonomy of interaction patterns that delineate various modes of human-AI interactivity. We find that current interactions are dominated by simplistic collaboration paradigms and report comparatively little support for truly interactive functionality. Our taxonomy serves as a valuable tool to understand how interactivity with AI is currently supported in decision-making contexts and foster deliberate choices of interaction designs

    Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations

    Full text link
    Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 97core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, usability, and human-AI collaboration performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI

    Examples of Gibsonian Affordances in Legged Robotics Research Using an Empirical, Generative Framework

    Get PDF
    Evidence from empirical literature suggests that explainable complex behaviors can be built from structured compositions of explainable component behaviors with known properties. Such component behaviors can be built to directly perceive and exploit affordances. Using six examples of recent research in legged robot locomotion, we suggest that robots can be programmed to effectively exploit affordances without developing explicit internal models of them. We use a generative framework to discuss the examples, because it helps us to separate—and thus clarify the relationship between—description of affordance exploitation from description of the internal representations used by the robot in that exploitation. Under this framework, details of the architecture and environment are related to the emergent behavior of the system via a generative explanation. For example, the specific method of information processing a robot uses might be related to the affordance the robot is designed to exploit via a formal analysis of its control policy. By considering the mutuality of the agent-environment system during robot behavior design, roboticists can thus develop robust architectures which implicitly exploit affordances. The manner of this exploitation is made explicit by a well constructed generative explanation
    • …
    corecore