4 research outputs found

    Explainable Authorship Verification in Social Media via Attention-based Similarity Learning

    Full text link
    Authorship verification is the task of analyzing the linguistic patterns of two or more texts to determine whether they were written by the same author or not. The analysis is traditionally performed by experts who consider linguistic features, which include spelling mistakes, grammatical inconsistencies, and stylistics for example. Machine learning algorithms, on the other hand, can be trained to accomplish the same, but have traditionally relied on so-called stylometric features. The disadvantage of such features is that their reliability is greatly diminished for short and topically varied social media texts. In this interdisciplinary work, we propose a substantial extension of a recently published hierarchical Siamese neural network approach, with which it is feasible to learn neural features and to visualize the decision-making process. For this purpose, a new large-scale corpus of short Amazon reviews for text comparison research is compiled and we show that the Siamese network topologies outperform state-of-the-art approaches that were built up on stylometric features. Our linguistic analysis of the internal attention weights of the network shows that the proposed method is indeed able to latch on to some traditional linguistic categories.Comment: Accepted for 2019 IEEE International Conference on Big Data (IEEE Big Data 2019

    Self-Calibrating Neural-Probabilistic Model for Authorship Verification Under Covariate Shift

    Full text link
    We are addressing two fundamental problems in authorship verification (AV): Topic variability and miscalibration. Variations in the topic of two disputed texts are a major cause of error for most AV systems. In addition, it is observed that the underlying probability estimates produced by deep learning AV mechanisms oftentimes do not match the actual case counts in the respective training data. As such, probability estimates are poorly calibrated. We are expanding our framework from PAN 2020 to include Bayes factor scoring (BFS) and an uncertainty adaptation layer (UAL) to address both problems. Experiments with the 2020/21 PAN AV shared task data show that the proposed method significantly reduces sensitivities to topical variations and significantly improves the system's calibration.Comment: 12th International Conference of the CLEF Association, 202

    O2D2: Out-Of-Distribution Detector to Capture Undecidable Trials in Authorship Verification

    Full text link
    The PAN 2021 authorship verification (AV) challenge is part of a three-year strategy, moving from a cross-topic/closed-set AV task to a cross-topic/open-set AV task over a collection of fanfiction texts. In this work, we present a novel hybrid neural-probabilistic framework that is designed to tackle the challenges of the 2021 task. Our system is based on our 2020 winning submission, with updates to significantly reduce sensitivities to topical variations and to further improve the system's calibration by means of an uncertainty-adaptation layer. Our framework additionally includes an out-of-distribution detector (O2D2) for defining non-responses. Our proposed system outperformed all other systems that participated in the PAN 2021 AV task.Comment: PAN@CLEF 202

    Variational Autoencoder with Embedded Student-tt Mixture Model for Authorship Attribution

    Full text link
    Traditional computational authorship attribution describes a classification task in a closed-set scenario. Given a finite set of candidate authors and corresponding labeled texts, the objective is to determine which of the authors has written another set of anonymous or disputed texts. In this work, we propose a probabilistic autoencoding framework to deal with this supervised classification task. More precisely, we are extending a variational autoencoder (VAE) with embedded Gaussian mixture model to a Student-tt mixture model. Autoencoders have had tremendous success in learning latent representations. However, existing VAEs are currently still bound by limitations imposed by the assumed Gaussianity of the underlying probability distributions in the latent space. In this work, we are extending the Gaussian model for the VAE to a Student-tt model, which allows for an independent control of the "heaviness" of the respective tails of the implied probability densities. Experiments over an Amazon review dataset indicate superior performance of the proposed method.Comment: Preprin
    corecore