79 research outputs found

    Forcing neurocontrollers to exploit sensory symmetry through hard-wired modularity in the game of Cellz

    Get PDF
    Several attempts have been made in the past to construct encoding schemes that allow modularity to emerge in evolving systems, but success is limited. We believe that in order to create successful and scalable encodings for emerging modularity, we first need to explore the benefits of different types of modularity by hard-wiring these into evolvable systems. In this paper we explore different ways of exploiting sensory symmetry inherent in the agent in the simple game Cellz by evolving symmetrically identical modules. It is concluded that significant increases in both speed of evolution and final fitness can be achieved relative to monolithic controllers. Furthermore, we show that a simple function approximation task that exhibits sensory symmetry can be used as a quick approximate measure of the utility of an encoding scheme for the more complex game-playing task

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    Evolutionary robotics in high altitude wind energy applications

    Get PDF
    Recent years have seen the development of wind energy conversion systems that can exploit the superior wind resource that exists at altitudes above current wind turbine technology. One class of these systems incorporates a flying wing tethered to the ground which drives a winch at ground level. The wings often resemble sports kites, being composed of a combination of fabric and stiffening elements. Such wings are subject to load dependent deformation which makes them particularly difficult to model and control. Here we apply the techniques of evolutionary robotics i.e. evolution of neural network controllers using genetic algorithms, to the task of controlling a steerable kite. We introduce a multibody kite simulation that is used in an evolutionary process in which the kite is subject to deformation. We demonstrate how discrete time recurrent neural networks that are evolved to maximise line tension fly the kite in repeated looping trajectories similar to those seen using other methods. We show that these controllers are robust to limited environmental variation but show poor generalisation and occasional failure even after extended evolution. We show that continuous time recurrent neural networks (CTRNNs) can be evolved that are capable of flying appropriate repeated trajectories even when the length of the flying lines are changing. We also show that CTRNNs can be evolved that stabilise kites with a wide range of physical attributes at a given position in the sky, and systematically add noise to the simulated task in order to maximise the transferability of the behaviour to a real world system. We demonstrate how the difficulty of the task must be increased during the evolutionary process to deal with this extreme variability in small increments. We describe the development of a real world testing platform on which the evolved neurocontrollers can be tested

    Evolutionary control of autonomous underwater vehicles

    Get PDF
    The goal of Evolutionary Robotics (ER) is the development of automatic processes for the synthesis of robot control systems using evolutionary computation. The idea that it may be possible to synthesise robotic control systems using an automatic design process is appealing. However, ER is considerably more challenging and less automatic than its advocates would suggest. ER applies methods from the field of neuroevolution to evolve robot control systems. Neuroevolution is a machine learning algorithm that applies evolutionary computation to the design of Artificial Neural Networks (ANN). The aim of this thesis is to assay the practical characteristics of neuroevolution by performing bulk experiments on a set of Reinforcement Learning (RL) problems. This thesis was conducted with the view of applying neuroevolution to the design of neurocontrollers for small low-cost Autonomous Underwater Vehicles (AUV). A general approach to neuroevolution for RL problems is presented. The is selected to evolve ANN connection weights on the basis that it has shown competitive performance on continuous optimisation problems, is self-adaptive and can exploit dependencies between connection weights. Practical implementation issues are identified and discussed. A series of experiments are conducted on RL problems. These problems are representative of problems from the AUV domain, but manageable in terms of problem complexity and computational resources required. Results from these experiments are analysed to draw out practical characteristics of neuroevolution. Bulk experiments are conducted using the inverted pendulum problem. This popular control benchmark is inherently unstable, underactuated and non-linear: characteristics common to underwater vehicles. Two practical characteristics of neuroevolution are demonstrated: the importance of using randomly generated evaluation sets and the effect of evaluation noise on search performance. As part of these experiments, deficiencies in the benchmark are identified and modifications suggested. The problem of an underwater vehicle travelling to a goal in an obstacle free environment is studied. The vehicle is modelled as a Dubins car, which is a simplified model of the high-level kinematics of a torpedo class underwater vehicle. Two practical characteristics of neuroevolution are demonstrated: the importance of domain knowledge when formulating ANN inputs and how the fitness function defines the set of evolvable control policies. Paths generated by the evolved neurocontrollers are compared with known optimal solutions. A framework is presented to guide the practical application of neuroevolution to RL problems that covers a range of issues identified during the experiments conducted in this thesis. An assessment of neuroevolution concludes that it is far from automatic yet still has potential as a technique for solving reinforcement problems, although further research is required to better understand the process of evolutionary learning. The major contribution made by this thesis is a rigorous empirical study of the practical characteristics of neuroevolution as applied to RL problems. A critical, yet constructive, viewpoint is taken of neuroevolution. This viewpoint differs from much of the reseach undertaken in this field, which is often unjustifiably optimistic and tends to gloss over difficult practical issues

    Behavioural robustness and the distributed mechanisms hypothesis

    Get PDF
    A current challenge in neuroscience and systems biology is to better understand properties that allow organisms to exhibit and sustain appropriate behaviours despite the effects of perturbations (behavioural robustness). There are still significant theoretical difficulties in this endeavour, mainly due to the context-dependent nature of the problem. Biological robustness, in general, is considered in the literature as a property that emerges from the internal structure of organisms, rather than being a dynamical phenomenon involving agent-internal controls, the organism body, and the environment. Our hypothesis is that the capacity for behavioural robustness is rooted in dynamical processes that are distributed between agent ‘brain’, body, and environment, rather than warranted exclusively by organisms’ internal mechanisms. Distribution is operationally defined here based on perturbation analyses. Evolutionary Robotics (ER) techniques are used here to construct four computational models to study behavioural robustness from a systemic perspective. Dynamical systems theory provides the conceptual framework for these investigations. The first model evolves situated agents in a goalseeking scenario in the presence of neural noise perturbations. Results suggest that evolution implicitly selects neural systems that are noise-resistant during coupling behaviour by concentrating search in regions of the fitness landscape that retain functionality for goal approaching. The second model evolves situated, dynamically limited agents exhibiting minimalcognitive behaviour (categorization task). Results indicate a small but significant tendency toward better performance under most types of perturbations by agents showing further cognitivebehavioural dependency on their environments. The third model evolves experience-dependent robust behaviour in embodied, one-legged walking agents. Evidence suggests that robustness is rooted in both internal and external dynamics, but robust motion emerges always from the systemin-coupling. The fourth model implements a historically dependent, mobile-object tracking task under sensorimotor perturbations. Results indicate two different modes of distribution, one in which inner controls necessarily depend on a set of specific environmental factors to exhibit behaviour, then these controls will be more vulnerable to perturbations on that set, and another for which these factors are equally sufficient for behaviours. Vulnerability to perturbations depends on the particular distribution. In contrast to most existing approaches to the study of robustness, this thesis argues that behavioural robustness is better understood in the context of agent-environment dynamical couplings, not in terms of internal mechanisms. Such couplings, however, are not always the full determinants of robustness. Challenges and limitations of our approach are also identified for future studies

    Lamarck's Revenge: Inheritance of Learned Traits Can Make Robot Evolution Better

    Full text link
    Evolutionary robot systems offer two principal advantages: an advanced way of developing robots through evolutionary optimization and a special research platform to conduct what-if experiments regarding questions about evolution. Our study sits at the intersection of these. We investigate the question ``What if the 18th-century biologist Lamarck was not completely wrong and individual traits learned during a lifetime could be passed on to offspring through inheritance?'' We research this issue through simulations with an evolutionary robot framework where morphologies (bodies) and controllers (brains) of robots are evolvable and robots also can improve their controllers through learning during their lifetime. Within this framework, we compare a Lamarckian system, where learned bits of the brain are inheritable, with a Darwinian system, where they are not. Analyzing simulations based on these systems, we obtain new insights about Lamarckian evolution dynamics and the interaction between evolution and learning. Specifically, we show that Lamarckism amplifies the emergence of `morphological intelligence', the ability of a given robot body to acquire a good brain by learning, and identify the source of this success: `newborn' robots have a higher fitness because their inherited brains match their bodies better than those in a Darwinian system.Comment: preprint-nature scientific report. arXiv admin note: text overlap with arXiv:2303.1259

    Spatial Learning for Robot Locialization

    Get PDF
    Although evolutionary algorithms have been employed to automatically synthesize control and behavior programs for robots and even design the physical structures of the robots, it is impossible for evolution to anticipate the detailed structure of specific environments that the robot might have to deal with. Robots must thus possess mechanisms to learn and adapt to the environments they encounter. One such mechanism that is of importance to mobile robots is that of spatial learning, i.e., the ability to learn the spatial locations of objects and places in the environment, which would allow them to successfully explore and navigate in a-priori unknown environments. This paper proposes a computational model for the acquisition and use of spatial information that is inspired by the role of the hippocampal formation in animal spatial learning and navigation

    Evolutionary Neurocontrollers for Autonomous Mobile Robots

    Get PDF
    In this article we describe a methodology for evolving neurocontrollers of autonomous mobile robots without human intervention. The presentation, which spans from technological and methodological issues to several experimental results on evolution of physical mobile robots, covers both previous and recent work in the attempt to provide a unified picture within which the reader can compare the effects of systematic variations on the experimental settings. After describing some key principles for building mobile robots and tools suitable for experiments in adaptive robotics, we give an overview of different approaches to evolutionary robotics and present our methodology. We start reviewing two basic experiments showing that different environments can shape very different behaviors and neural mechanisms under very similar selection criteria. We then address the issue of incremental evolution in two different experiments from the perspective of changing environments and robot morphologies. Finally, we investigate the possibility of evolving plastic neurocontrollers and analyze and evolved neurocontroller that relies on fast and continuously changes synapses characterized by dynamic stability. We conclude by reviewing the implications of this methodology for engineering, biology, cognitive science, and artificial life, and point at future directions of research

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper, we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot's body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules
    • 

    corecore