20 research outputs found

    Experimental Validations of Bandwidth Compressed Multicarrier Signals

    Get PDF
    We comprehensively summarize experimental validations 1 of bandwidth compressed multicarrier waveforms for future 5th generation (5G) applications. The proposed waveforms are derived from an existing non-orthogonal multicarrier concept termed spectrally efficient frequency division multiplexing (SEFDM) where sub-carriers are non-orthogonally packed at frequencies below the symbol rate. This improves the spectral efficiency at the cost of self-created inter carrier interference (ICI). In this work, experiments are reported and testing is carried out in three scenarios including long term evolution (LTE)-like wireless link; millimeter wave radio-over-fiber (RoF) link and optical fiber link. In the first scenario, for a given 25 MHz bandwidth, the SEFDM testbed can provide 70 Mbit/s gross data rate while only 50 Mbit/s can be achieved for an OFDM system occupying the same bandwidth. For the millimeter wave experiment, occupying a 1.125 GHz bandwidth, the gross bit rate for OFDM is 2.25 Gbit/s and with 40% bandwidth compression, 3.75 Gbit/s can be achieved for SEFDM. Two experimental optical fiber links are described in this work; a 10 Gbit/s direct detection optical SEFDM system and a 24 Gbit/s coherent detection SEFDM system. The LTE-like signals and millimeter wave technologies are well suited to provide last mile communications to end users as both can support mobility in wireless environments. The lightwave signals delivered by optical fibers would offer higher data rates and support long-haul communications. The reported techniques, used individually or combined, would be of interest to future wireless system designers, where bandwidth saving is of importance, such as in 5G networks, aiming to provide high capacity and high mobility, simultaneously while saving spectrum

    Experimental Demonstration of Spectrally Efficient Frequency Division Multiplexing Transmissions at E-Band

    Get PDF
    This paper presents the design and the experimental demonstration of transmission of spectrally efficient frequency division multiplexing (SEFDM) signals, using a single 5-GHz channel, from 81 to 86 CHz in the E-hand frequency allocation. A purpose-built E-band SEFDM experimental demonstrator, consisting of transmitter and receiver GaAs microwave integrated circuits, along with a complete chain of digital signal processing is explained. Solutions are proposed to solve the channel and phase offset estimation and equalization issues, which arise from the well-known intercarrier interference between the SEFDM signal subcarriers. This paper shows the highest transmission rate of 12 Gb/s over a bandwidth varying between 2.67 to 4 CHz depending on the compression level of the SEFDM signals, which results in a spectral efficiency improvement by up to 50%, compared to the conventional orthogonal frequency division multiplexing modulation format

    The First 15 Years of SEFDM: A Brief Survey

    Get PDF
    Spectrally efficient frequency division multiplexing (SEFDM) is a multi-carrier signal waveform, which achieves higher spectral efficiency, relative to conventional orthogonal frequency division multiplexing (OFDM), by violating the orthogonality of its sub-carriers. This survey provides the history of SEFDM development since its inception in 2003, covering fundamentals and concepts, wireless and optical communications applications, circuit design and experimental testbeds. We focus on work done at UCL and outline work done other universities and research laboratories worldwide. We outline techniques to improve the performance of SEFDM and its practical utility with focus on signal generation, detection and channel estimation

    Experimental Over-The-Air Testing for Coexistence of 4G and A Spectrally Efficient Non-Orthogonal Signal

    Get PDF
    This work investigates several experimental validations for the bandwidth compressed multicarrier signal termed spectrally efficient frequency division multiplexing (SEFDM). The signal compresses bandwidth, therefore improved spectral efficiency, by packing sub-carriers closer. Unlike typical orthogonal frequency division multiplexing (OFDM) signals, SEFDM violates the orthogonality criterion, therefore self-created inter carrier interference (ICI) is introduced. In this work, to ameliorate the effect of interference, a method based on sub-carrier pulse shaping, targeting massive machine-type communication (mMTC), is developed and tested experimentally. Practical over-the-air testing of the proposal is operated on commercially developed software defined radio platforms. Results show that in the condition of coexistence scenario SEFDM can significantly reduce interference when used with existing long term evolution (LTE) signals leading to improved quality of service. The throughput of LTE signals is therefore improved from 49.92 Mbps to 63.21 Mbps. Additionally, the proposed pulse shaping Nyquist-SEFDM performs well in scenarios where the spectrum is limited and in fact it outperforms pulse shaped OFDM significantly, both in terms of bandwidth saving and throughput, which is boosted from 4.35 Mbps to 43.36 Mbps

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications

    Experimental Validations on Self Interference Cancelled Non-Orthogonal SEFDM Signals

    Get PDF
    Spectral efficiency can be improved in multicarrier systems through the employment of non-orthogonal overlapping sub-carriers, termed spectrally efficient frequency division multiplexing (SEFDM), but with self-created interference. Previous work has focused on signal detection development. The trade-off between performance and complexity is challenging. This work investigates a self interference cancellation scheme for SEFDM to make use of ICI information at the transmitter and simplify the design of receiver. Repetition codes are used in the system where the same symbol with opposite signs are modulated onto adjacent sub-carriers. Therefore, ICI caused by adjacent sub-carriers would be cancelled mutually. However, the spectral efficiency is reduced. In order to maintain the same spectral efficiency and mutual interference cancellation benefits, the optimal combination of various modulation formats and bandwidth compression factors have to be studied jointly to derive maximum achievable spectral efficiency. Both simulation and experiment are reported and results validate the performance of the proposed self interference cancellation scheme

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail

    Mitigation of Memory Effects in High Power Microwave Amplifiers

    Get PDF
    This thesis expounds on the application of Doherty Power Amplifiers (DPA) along with baseband Digital PreDistortion (DPD) techniques to tackle the antagonistic demands of high power efficiency and linearity imposed by modern communications. Memoryless modeling is firstly introduced and its limitations when dealing with PAs driven with realistic devices. Therefore, electrical memory effects are explored in greater detail and a mathematical model showing the relation between the various harmonic components in the output and how they can re-mix back into the fundamental band is developed. The importance of the output bias network in the reduction of memory effects is highlighted. A memory polynomial (MP) based DPD is shown to be a good solution for the linearization of wideband DPA which exhibit strong memory effects. To further improve this solution, the complexity of the MP-DPD is reduced. For that, the even-order terms in the MP branches were first removed. Then, the PA memory effects theory was used to further reduce the number of coefficients of the MP-DPD by decreasing the nonlinearity orders in the different branches individually. These two steps allowed for a reduction of the number of coefficients to almost one-third and the conditioning number by three orders of magnitude while maintaining the same linearization capability. This substantially alleviates the requirements on the digital signal processors and the time needed to construct and implement the MP-DPD in real environment. Experimental validation carried out using a 400 Watt DPA, driven with 4-Carrier WCDMA signal, showed excellent linearization capability by achieving an ACPR of better than 50 dBc with a power efficiency of better than 42.4%. Despite this, the depth of the memory effects in the DPA was still significant. While an effort was made to reduce further the memory effects, the discrepancy between the simulated behavior of the DPA and that observed in simulation was significant. In an attempt to rule out the DPA structure as the cause of the discrepancy between the measured results and the behavior predicted in simulation, a single branch class AB PA was designed using the transistor model. The PA behavior was well predicted when driven with a Continuous Wave (CW) signal, however the simulated and measured behavior differed greatly when the PA was driven by a two tone signal. This rendered the desired reduction of the memory effects impossible at the design stage

    Mobile to mobile channel modelling for wireless communications

    Get PDF
    Wireless communication has been experiencing many recent advances in mobile to mobile (M2M) applications. M2M communication systems differ from conventional fixed to mobile systems by having both transmitter and receiver in low elevation and in motion. This raises the need to come up with new channel models and perform statistical analysis on M2M communication channels looking from a different perspective. This need motivated us to perform the research outlined in this thesis. In reviewing the literature we found that though in general the M2M channel models are sparse, a major gap exists in the non geometrical stochastic based mathematical channel models. In filling this gap, we develop a novel mathematical non geometrical stochastic multiple input multiple output (MIMO) M2M channel model for two dimensional (2D) and three dimensional (3D) scattering environments. This model is based on the underlying physics of free space wave propagation and can be used as a framework for any environment by selecting suitable complex scattering gain functions. In addition, we extend this novel model to multicarrier M2M which is the first multicarrier channel model in the non geometrical stochastic M2M category. Based on our novel M2M channel model, we carry out an extensive analysis in space-time correlation, space-frequency correlation and second order channel statistics. With the choice of suitable parameters, this analysis and channel model can be used for any wireless environment. Thus, we claim that our novel channel model together with the analysis performed in this thesis can be taken as a generalized framework. A significant contribution of our analysis is the consideration of the impact of transmitter and receiver speed to space-time and space-frequency correlation, which is not available in the literature. Using a von Mises-Fisher distribution as the angular power distribution, the usefulness of the derived temporal correlation function is discussed. The simulation results corroborate the fact that both space-time and space-frequency correlations are reduced when transmitter or receiver speed increases. The rate of reduction of space-time correlation in von Mises-Fisher distribution scattering environment is more than in the isotropic environment. Under second order channel statistics, we consider Rice, Rayleigh and Nakagami fading channels in four different non-isotropic scattering environments with angle of departure (AoD) and angle of arrival (AoA) distributions given by (i) separable Truncated Gaussian, (ii) separable von-Mises, (iii) truncated Gaussian bivariate and (iv) truncated Laplacian bivariate distributions. We show that the major second order statistics, namely, the level crossing rate (LCR) and the average fade duration (AFD), in different fading channels can be expressed in terms of known scattering coefficients of the AoD and AoA distributions. As the channel models and their respective measurements provide reliable knowledge of the channel for the design and analysis of M2M systems, the proposed channel model and the corresponding analysis will be useful for the design, testing and performance evaluation of future M2M communication systems

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck
    corecore