3 research outputs found

    Experimental Tuning of AIFSN and CWmin Parameters to Prioritize Voice over Data Transmission in 802.11e WLAN Networks

    Get PDF
    In this paper we experimentally study the impact of two EDCA parameters, namely AIFSN and CWmin, on a mixed voice/data wireless transmission. In particular we investigate how the tuning of these parameters affects both the voice transmission quality and background data throughput. We predict end-to-end voice transmission quality from time varying transmission impairments using the latest Appendix to the ITU-T E-model. Our experimental results show that the tuning of the EDCA parameters can be used to successfully prioritize voice transmission over data in real 802.11e networks. We also demonstrate that the AIFSN parameter more effectively protects voice calls against background data traffic than CWmin. To the best of our knowledge, this is the first experimental investigation on tuning of MAC layer parameters in a real 802.11e WLAN network from the perspective of end-to-end voice transmission quality and end user satisfaction

    Experimental Investigation on VoIP Performance and the Resource Utilization in 802.11b WLANs

    Get PDF
    In a shared medium network like the 802.11b WLAN, predicting the quality of VoIP calls from the resource usage of the wireless medium is highly desirable. Analyzing the bandwidth usage at the L2/MAC layer may be especially useful for potential QoS provisioning and call admission schemes. This paper experimentally investigates the relationship between resource utilization in WLANS and the quality of VoIP calls transmitted over wireless medium. Specifically we evaluate how the amount of free bandwidth influences transmission impairments (i.e. delay, loss and jitter) and thus call quality. Resource utilization (under the MAC bandwidth components framework) is calculated by a WLAN resource monitoring application that passively “sniffs” packets at the L2/MAC layer and analyses their headers and temporal characteristics. The quality of VoIP calls is predicted using an extended version of the ITU-T E-model, which estimates user satisfaction from time varying transmission impairments

    Secure VoIP Performance Measurement

    Get PDF
    This project presents a mechanism for instrumentation of secure VoIP calls. The experiments were run under different network conditions and security systems. VoIP services such as Google Talk, Express Talk and Skype were under test. The project allowed analysis of the voice quality of the VoIP services based on the Mean Opinion Score (MOS) values generated by Perceptual valuation of Speech Quality (PESQ). The quality of the audio streams produced were subjected to end-to-end delay, jitter, packet loss and extra processing in the networking hardware and end devices due to Internetworking Layer security or Transport Layer security implementations. The MOS values were mapped to Perceptual Evaluation of Speech Quality for wideband (PESQ-WB) scores. From these PESQ-WB scores, the graphs of the mean of 10 runs and box and whisker plots for each parameter were drawn. Analysis on the graphs was performed in order to deduce the quality of each VoIP service. The E-model was used to predict the network readiness and Common vulnerability Scoring System (CVSS) was used to predict the network vulnerabilities. The project also provided the mechanism to measure the throughput for each test case. The overall performance of each VoIP service was determined by PESQ-WB scores, CVSS scores and the throughput. The experiment demonstrated the relationship among VoIP performance, VoIP security and VoIP service type. The experiment also suggested that, when compared to an unsecure IPIP tunnel, Internetworking Layer security like IPSec ESP or Transport Layer security like OpenVPN TLS would improve a VoIP security by reducing the vulnerabilities of the media part of the VoIP signal. Morever, adding a security layer has little impact on the VoIP voice quality
    corecore