2,933 research outputs found

    Secret-key generation from wireless channels: Mind the reflections

    Full text link
    Secret-key generation in a wireless environment exploiting the randomness and reciprocity of the channel gains is considered. A new channel model is proposed which takes into account the effect of reflections (or re-radiations) from receive antenna elements, thus capturing an physical property of practical antennas. It turns out that the reflections have a deteriorating effect on the achievable secret-key rate between the legitimate nodes at high signal-to-noise-power-ratio (SNR). The insights provide guidelines in the design and operation of communication systems using the properties of the wireless channel to prevent eavesdropping.Comment: 6 pages, 9 figure

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Doctor of Philosophy

    Get PDF
    dissertationCross layer system design represents a paradigm shift that breaks the traditional layer-boundaries in a network stack to enhance a wireless network in a number of di erent ways. Existing work has used the cross layer approach to optimize a wireless network in terms of packet scheduling, error correction, multimedia quality, power consumption, selection of modulation/coding and user experience, etc. We explore the use of new cross layer opportunities to achieve secrecy and e ciency of data transmission in wireless networks. In the rst part of this dissertation, we build secret key establishment methods for private communication between wireless devices using the spatio-temporal variations of symmetric-wireless channel measurements. We evaluate our methods on a variety of wireless devices, including laptops, telosB sensor nodes, and Android smartphones, with diverse wireless capabilities. We perform extensive measurements in real-world environments and show that our methods generate high entropy secret bits at a signi cantly faster rate in comparison to existing approaches. While the rst part of this dissertation focuses on achieving secrecy in wireless networks, the second part of this dissertation examines the use of special pulse shaping lters of the lterbank multicarrier (FBMC) physical layer in reliably transmitting data packets at a very high rate. We rst analyze the mutual interference power across subcarriers used by di erent transmitters. Next, to understand the impact of FBMC beyond the physical layer, we devise a distributed and adaptive medium access control protocol that coordinates data packet tra c among the di erent nodes in the network in a best e ort manner. Using extensive simulations, we show that FBMC consistently achieves an order-of-magnitude performance improvement over orthogonal frequency division multiplexing (OFDM) in several aspects, including packet transmission delays, channel access delays, and e ective data transmission rate available to each node in static indoor settings as well as in vehicular networks

    Lightweight Information Security Methods for Indoor Wireless Body Area Networks: from Channel Modeling to Secret Key Extraction

    Get PDF
    A group of wirelessly communicating sensors that are placed inside, on or around a human body constitute a Wireless Body Area Network (WBAN). Continuous monitoring of vital signs through WBANs have a potential to revolutionize current health care services by reducing the cost, improving accessibility, and facilitating medical diagnosis. However, sensitive nature of personal health data requires WBANs to integrate appropriate security methods and practices. As limited hardware resources make conventional security measures inadequate in a WBAN context, this work is focused on alternative techniques based on Wireless Physical Layer Security (WPLS). More specifically, we introduce a symbiosis of WPLS and Compressed Sensing to achieve security at the time of sampling. We successfully show how the proposed framework can be applied to electrocardiography data saving significant computational and memory resources. In the scenario when a WBAN Access Point can make use of diversity methods in the form of Switch-and-Stay Combining, we demonstrate that output Signal-to-Noise Ratio (SNR) and WPLS key extraction rate are optimized at different switching thresholds. Thus, the highest key rate may result in significant loss of output SNR. In addition, we also show that the past WBAN off-body channel models are insufficient when the user exhibits dynamic behavior. We propose a novel Rician based off-body channel model that can naturally reflect body motion by randomizing Rician factor K and considering small and large scale fading to be related. Another part of our investigation provides implications of user\u27s dynamic behavior on shared secret generation. In particular, we reveal that body shadowing causes negative correlation of the channel exposing legitimate participants to a security threat. This threat is analyzed from a qualitative and quantitative perspective of a practical secret key extraction algorithm

    Secure key design approaches using entropy harvesting in wireless sensor network: A survey

    Get PDF
    Physical layer based security design in wireless sensor networks have gained much importance since the past decade. The various constraints associated with such networks coupled with other factors such as their deployment mainly in remote areas, nature of communication etc. are responsible for development of research works where the focus is secured key generation, extraction, and sharing. Keeping the importance of such works in mind, this survey is undertaken that provides a vivid description of the different mechanisms adopted for securely generating the key as well its randomness extraction and also sharing. This survey work not only concentrates on the more common methods, like received signal strength based but also goes on to describe other uncommon strategies such as accelerometer based. We first discuss the three fundamental steps viz. randomness extraction, key generation and sharing and their importance in physical layer based security design. We then review existing secure key generation, extraction, and sharing mechanisms and also discuss their pros and cons. In addition, we present a comprehensive comparative study of the recent advancements in secure key generation, sharing, and randomness extraction approaches on the basis of adversary, secret bit generation rate, energy efficiency etc. Finally, the survey wraps up with some promising future research directions in this area
    corecore