1 research outputs found

    Experimental architecture for synchronized recordings of cerebral, muscular and biomechanical data during lower limb activities

    No full text
    In this paper, an architecture that allows the synchronized recording of cerebral, muscular and biomechanical data during lower limb activities has been designed. The synchronization issue has been addressed. The goal is to analyze the relationship between the different signals, first during simple lower limbs movements, then extending the analysis to gait. Five incomplete spinal cord injury patients and four healthy users participated in experiments to validate the architecture. The users were asked to perform simple movements that involve only one or two joints, particularly knee and ankle. Future studies with the recorded data will address several issues, such as creating neuromusculoskeletal models that relate kinematics data with EMG information, improving the decoding of the angles of the lower limb through EEG signals, or analyzing the coherence between the EEG signals and the EMG information
    corecore