3 research outputs found

    Nonlinear Dynamics, Synchronisation and Chaos in Coupled FHN Cardiac and Neural Cells

    Get PDF
    Physiological systems are amongst the most challenging systems to investigate from a mathematically based approach. The eld of mathematical biology is a relatively recent one when compared to physics. In this thesis I present an introduction to the physiological aspects needed to gain access to both cardiac and neural systems for a researcher trained in a mathematically based discipline. By using techniques from nonlinear dynamical systems theory I show a number of results that have implications for both neural and cardiac cells. Examining a reduced model of an excitable biological oscillator I show how rich the dynamical behaviour of such systems can be when coupled together. Quantifying the dynamics of coupled cells in terms of synchronisation measures is treated at length. Most notably it is shown that for cells that themselves cannot admit chaotic solutions, communication between cells be it through electrical coupling or synaptic like coupling, can lead to the emergence of chaotic behaviour. I also show that in the presence of emergent chaos one nds great variability in intervals of activity between the constituent cells. This implies that chaos in both cardiac and neural systems can be a direct result of interactions between the constituent cells rather than intrinsic to the cells themselves. Furthermore the ubiquity of chaotic solutions in the coupled systems may be a means of information production and signaling in neural systems

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore