7 research outputs found

    Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures

    Full text link
    This paper considers the controllability analysis and fault tolerant control problem for a class of hexacopters. It is shown that the considered hexacopter is uncontrollable when one rotor fails, even though the hexacopter is over-actuated and its controllability matrix is row full rank. According to this, a fault tolerant control strategy is proposed to control a degraded system, where the yaw states of the considered hexacopter are ignored. Theoretical analysis indicates that the degraded system is controllable if and only if the maximum lift of each rotor is greater than a certain value. The simulation and experiment results on a prototype hexacopter show the feasibility of our controllability analysis and degraded control strategy.Comment: 21 pages, 7 figures, submitted to Journal of Intelligent & Robotic System

    A Bayesian approach to fault identification in the presence of multi-component degradation

    Get PDF
    Fault diagnosis typically consists of fault detection, isolation and identification. Fault detection and isolation determine the presence of a fault in a system and the location of the fault. Fault identification then aims at determining the severity level of the fault. In a practical sense, a fault is a conditional interruption of the system ability to achieve a required function under specified operating condition; degradation is the deviation of one or more characteristic parameters of the component from acceptable conditions and is often a main cause for fault generation. A fault occurs when the degradation exceeds an allowable threshold. From the point a new aircraft takes off for the first time all of its components start to degrade, and yet in almost all studies it is presumed that we can identify a single fault in isolation, i.e. without considering multi-component degradation in the system. This paper proposes a probabilistic framework to identify a single fault in an aircraft fuel system with consideration of multi-component degradation. Based on the conditional probabilities of sensor readings for a specific fault, a Bayesian method is presented to integrate distributed sensory information and calculate the likelihood of all possible fault severity levels. The proposed framework is implemented on an experimental aircraft fuel rig which illustrates the applicability of the proposed method

    An Adaptive Fault-Tolerant Sliding Mode Control Allocation Scheme for Multirotor Helicopter Subject to Simultaneous Actuator Faults

    Get PDF
    This paper proposes a novel adaptive sliding mode based control allocation scheme for accommodating simultaneous actuator faults. The proposed control scheme includes two separate control modules with virtual control part and control allocation part, respectively. As a lowlevel control module, the control allocation/re-allocation scheme is used to distribute/redistribute virtual control signals among the available actuators under fault-free or faulty cases, respectively. In the case of simultaneous actuator faults, the control allocation and re-allocation module may fail to meet the required virtual control signal which will degrade the overall system stability. The proposed online adaptive scheme can seamlessly adjust the control gains for the high-level sliding mode control module and reconfigure the distribution of control signals to eliminate the effect of the virtual control error and maintain stability of the closed-loop system. In addition, with the help of the boundary layer for constructing the adaptation law, the overestimation of control gains is avoided, and the adaptation ceases once the sliding variable is within the boundary layer. A significant feature of this study is that the stability of the closed-loop system is guaranteed theoretically in the presence of simultaneous actuator faults. The effectiveness of the proposed control scheme is demonstrated by experimental results based on a modified unmanned multirotor helicopter under both single and simultaneous actuator faults conditions with comparison to a conventional sliding mode controller and a linear quadratic regulator scheme

    Development of Fault Diagnosis and Fault Tolerant Control Algorithms with Application to Unmanned Systems

    Get PDF
    Unmanned vehicles have been increasingly employed in real life. They include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned spacecrafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other autonomous systems need controllers to stabilize and control them. On the other hand unmanned systems might subject to different faults. Detecting a fault, finding the location and severity of it, are crucial for unmanned vehicles. Having enough information about a fault, it is needed to redesign controller based on post fault characteristics of the system. The obtained controlled system in this case can tolerate the fault and may have a better performance. The main focus of this thesis is to develop Fault Detection and Diagnosis (FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety and reliability of various missions using unmanned systems. In the field of unmanned ground vehicles, a new kinematical control method has been proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It has been experimentally tested on an UGV, called Qbot. A stable leader-follower formation controller for time-varying formation configuration of multiple nonholonomic wheeled mobile robots has also been presented and is examined through computer simulation. In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As for space missions, an FDD algorithm for the attitude control system of the Japan Canada Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed. The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the FDD algorithm has been shown through simulation results in a nonlinear simulator of the JC2Sat-FF. A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algorithms and fuzzy controller were evaluated through experimental application to a quadrotor helicopter testbed called Qball-X4

    Fault detection and diagnosis using hybrid artificial neural network based method

    Get PDF
    This thesis proposes a novel approach to fault detection and diagnosis (FDD) that is focused on artificial neural network (ANN). Unlike traditional methods for FDD, neural networks can take advantage of large amounts of complex process data and extract core features to help detect and diagnose faults. In the first part of this work, a hybrid model was developed to improve efficiency and feasibility of neural networks by combining Kernel Principal Analysis (kPCA) and deep neural network. The hybrid model was successfully validated by Tennessee Eastman Process. The second part of the research focuses on a specific application to gas leak detection and classification. In this scenario, a convolutional network (ConvNet) was used as a feature extraction tool prior to network training due to the visual nature of data. The model was shown to accurately predict leaks and leak sizes; furthermore, further model optimizations were performed and evaluated. The proposed approach is superior to other FDD approaches due to its performance and optimization flexibility
    corecore