116 research outputs found

    Investigations on Machining Aspects of Inconel 718 During Wire Electro-Discharge Machining (WEDM): Experimental and Numerical Analysis

    Get PDF
    Wire electro- discharge machining (WEDM) is known as unique cutting in manufacturing industries, especially in the good tolerance with intricate shape geometry in die industry. In this study the workpiece has been chosen as Inconel 718. Inconel 718 super alloy is widely used in aerospace industries. This nickel based super alloy has excellent resistance to high temperature, mechanical and chemical degradations with toughness and work hardening characteristics materials. Due to these properties, the machinability studies of this material have been carried-out in this study. The machining of Inconel 718 using variation of wire electrode material (brass wire electrode and zinc coated brass wire) with diameter equal to 0.20mm has been carried out. The objective of this study is mainly to investigate the various WEDM process parameters and performance of wire electrodes materials on Inconel 718 with various types of cutting. The optimal process parameter setting for each of wire electrode material has been obtained for multi-objective response. The kerf width, Material Removal Rate (MRR) and surface finish, corner error, corner deviation and angular error are the responses which are function of process variables viz. pulse-on time, discharge current, wire speed, flushing pressure and taper angle. The non-linear regression analysis has been developed for relationship between the process parameter and process characteristics. The optimal parameters setting have been carried out using multi-objective nature-inspired meta-heuristic optimization algorithm such as Whale Optimization Algorithm (WOA) and Gray Wolf Optimizer (GWO). Lastly numerical model analysis has been carried out to determine MRR and residual stress using ANSYS software and MRR model validated with the experimental results. The overlapping approach has been adopted for solving the multi-spark problem and validate with the experimental results

    Experimental and Numerical Analysis of Angular Error in Taper Cutting Using Wire Electrical Discharge Machining

    Get PDF
    Today, there are far greater demands for higher precision in machining, use fewer tools and ease of operation. Wire electro discharge machining (WEDM) is one, mostly acceptable non-conventional machining processes, using fewer tools; ease machining and producing extreme accurate shapes in hard materials those using in the tooling industry where the extreme precision is required and complexly determines such as extrusion dies in wear-resistant materials, cutting dies, etc. Wire EDM Taper cutting took forward the generation of inclined ruled surfaces, and it is eminently more important in the manufacturing of tooling requiring draft angles. The required angle is reached by applying a relative moment between the lower guide and the upper guide. Deformation arises in the wire, during the machining of taper cutting using Wire EDM. Due to that deformation in the wire, effected to the ruled inclination of machined parts. Such circumstances cause a dimensional error, loss of tolerances and less precision that can prime to the rejection of high added value tooling. To predict the deformation of wire by considering contact mechanics, properties of wire, properties of the guide, boundary conditions, typically used in taper cutting operations, has been taking into the account. FEM is needed to reduce the experimental cost and lack of time consumption and to give a more common approach to the problem. Finite Element Model (FEM) has been used to find out the deformation occurs during wire EDM process by changing the wire parameters like wire tension, wire diameter, taper angle and wire length, which is generally considering in taper cutting. This result intends to give you better understanding shows that taper angle and wire length are the most effective parameters in taper cutting process. Taguchi’s L16 orthogonal array is used to reduce the experimental runs. Traditional Taguchi approach is insufficient to solve a multi-response optimization problem. In order to overcome this limitation, utility theory has been implemented, to convert multi-responses into single equivalent response called overall utility index. Both the results, FEM and experimental have been checked

    Artificial neural network-based prediction assessment of wire electric discharge machining parameters for smart manufacturing

    Get PDF
    Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5mm, have been cut on Nickelvac-HX. Tapering in WEDM is a delicate process to avoid disadvantages such as wire break, wire bend, wire friction, guide wear, and insufficient flushing. Taper angles viz. 0°, 15°, and 30° were obtained from a unique fixture to get holes at different angles. The study also shows the influence of taper angles on the part geometry and area of the holes. Next, the artificial neural network (ANN) technique is implemented for the parametric result prediction. The findings were in good agreement with the experimental data, supporting the viability of the ANN approach for the evaluation of the manufacturing process. The findings in this research provide as a reference to the potential of AI-based assessment in smart manufacturing processes and as a design tool in many manufacturingrelated fields

    Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials

    Get PDF
    Due to the variety of properties of the composites produced, determining the choice of the appropriate cutting technique is demanding. Therefore, it is necessary to know the problems associated with cutting operations, i.e., mechanical cutting (blanking), plasma cutting plasma, water jet cutting, abrasive water jet cutting, laser cutting and electrical discharge machining (EDM). The criterion for choosing the right cutting technique for a specific application depends not only on the expected cutting speed and material thickness, but it is also related to the physico-mechanical properties of the material being processed. In other words, the large variety of composite properties necessitates an individual approach determining the possibility of cutting a composite material with a specific method. This paper presents the achievements gained over the last ten years in the field of non-conventional cutting of metal-based and polymer-based composite materials. The greatest attention is paid to the methods of electrical discharge machining and ultrasonic cutting. The methods of high-energy cutting and water jet cutting are also considered and discussed. Although it is well-known that plasma cutting is not widely used in cutting composites, the authors also took into account this type of cutting treatment. The volume of each chapter depends on the dissemination of a given metal-based and polymer-based composite material cutting technique. For each cutting technique, the paper presents the phenomena that have a direct impact on the quality of the resulting surface and on the formation of the most important defects encountered. Finally, the identified current knowledge gaps are discussed.publishedVersio

    Machining of Stainless Steels and Alloys Using Non-Traditional Machining Processes

    Get PDF
    Stainless steels and alloys are characterized primarily by their corrosion resistance, high strength, ductility, etc. used for various advanced applications like automotive and aerospace, sugar refineries, construction materials, etc. Many advanced high-speed machineries /systems need fine quality of parts to provide good performance in its working conditions. The machining of stainless steel and its alloys is of interest, because, of its excellent mechanical properties. Stainless steels and alloys are machined generally by traditional machining processes. But complex shapes and features on products are difficult task with the use of traditional metal cutting techniques. To machine the advanced materials to produce high dimensional accuracy and generation of intricate shapes in difficult-to-machine materials like stainless steels and alloys, nontraditional machining (NTM) techniques are now attractive the viable choices. To attain improved machining performance of the NTM processes, it is always necessary to find the optimal combinations of various process input parameters of those processes. In the present chapter, some aspects of machining of stainless steel and alloys using NTM processes such as electric discharge machining (EDM) and wire EDM, are discussed and some concluding remarks have been drawn from the study

    A Study on Surface Roughness and Cutting Width for Circular Contour Machining of Stir Cast AA6063/SiC Composites in WEDM

    Get PDF
    Wire electrical discharge machining is used in machining electric conductive materials with intricate shapes and profiles. This paper presents an experimental investigation on the influence of cutting conditions of WEDM on surface roughness and cutting width of machining of AA6063/SiC composites. Here a semi cylindrical piece is removed from a rectangular plate of AA6063/SiC composites plate fabricated with reinforcing SiC in 0%, 5%, 10% and 15% weight fractions through stir casting. The effect of WEDM parameters such as pulse on time, pulse off time and peak current on surface roughness and cutting width on different composition of AA6063/SiC were analyzed for circular contour machining. The experimental results show that increase in percentage of SiC has high influence in mechanical behavior of AA6063/SiC composites and the effect of pulse on time is very significant in reducing the surface roughness and pulse off time plays an important role in producing minimum cutting width. &nbsp

    Parametric Optimization of Taper Cutting Process using Wire Electrical Discharge Machining (WEDM)

    Get PDF
    Significant technological advancement of wire electrical discharge machining (WEDM) process has been observed in recent times in order to meet the requirements of various manufacturing fields especially in the production of parts with complex geometry in precision die industry. Taper cutting is an important application of WEDM process aiming at generating complex parts with tapered profiles. Wire deformation and breakage are more pronounced in taper cutting as compared with straight cutting resulting in adverse effect on desired taper angle and surface integrity. The reasons for associated problems may be attributed to certain stiffness of the wire. However, controlling the process parameters can somewhat reduce these problems. Extensive literature review reveals that effect of process parameters on various performance measures in taper cutting using WEDM is also not adequately addressed. Hence, study on effect of process parameters on performance measures using various advanced metals and metal matrix composites (MMC) has become the predominant research area in this field. In this context, the present work attempts to experimentally investigate the machining performance of various alloys, super alloys and metal matrix composite during taper cutting using WEDM process. The effect of process parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension on various performance measures such as angular error, surface roughness, cutting rate and white layer thickness are studied using Taguchi’s analysis. The functional relationship between the input parameters and performance measures has been developed by using non-linear regression analysis. Simultaneous optimization of the performance measures has been carried out using latest nature inspired algorithms such as multi-objective particle swarm optimization (MOPSO) and bat algorithm. Although MOPSO develops a set of non-dominated solutions, the best ranked solution is identified from a large number of solutions through application of maximum deviation method rather than resorting to human judgement. Deep cryogenic treatment of both wire and work material has been carried out to enhance the machining efficiency of the low conductive work material like Inconel 718. Finally, artificial intelligent models are proposed to predict the various performance measures prior to machining. The study offers useful insight into controlling the parameters to improve the machining efficiency

    Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM

    Get PDF
    Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box–Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results

    Perspective and Prospects of Wire Electric Discharge Machining (WEDM)

    Get PDF
    Wire Electric Discharge Machining (WEDM) is a non-traditional machining method that is widely used in the manufacture of aerospace/aircraft and medical equipment for conductive materials. WEDM products are expected to have good dimensional accuracy, surface roughness, and geometry. Many researchers have done experiments on various materials to optimize the process, which has many parameters and response characteristics. This paper provides an overview of the WEDM process on alloy steels in order to understand the impact of input process variables on output responses and optimization techniques for selecting optimal process parameters. This paper also highlights WEDM process trends as well as workpiece materials, wire varieties, wire diameters, and optimization approaches. This work is expected to be useful in initiating further research on WEDM by documenting substantial research works confirming the latest scenario
    corecore