2,450 research outputs found

    Low overhead concurrency control for partitioned main memory databases

    Get PDF
    Database partitioning is a technique for improving the performance of distributed OLTP databases, since "single partition" transactions that access data on one partition do not need coordination with other partitions. For workloads that are amenable to partitioning, some argue that transactions should be executed serially on each partition without any concurrency at all. This strategy makes sense for a main memory database where there are no disk or user stalls, since the CPU can be fully utilized and the overhead of traditional concurrency control, such as two-phase locking, can be avoided. Unfortunately, many OLTP applications have some transactions which access multiple partitions. This introduces network stalls in order to coordinate distributed transactions, which will limit the performance of a database that does not allow concurrency. In this paper, we compare two low overhead concurrency control schemes that allow partitions to work on other transactions during network stalls, yet have little cost in the common case when concurrency is not needed. The first is a light-weight locking scheme, and the second is an even lighter-weight type of speculative concurrency control that avoids the overhead of tracking reads and writes, but sometimes performs work that eventually must be undone. We quantify the range of workloads over which each technique is beneficial, showing that speculative concurrency control generally outperforms locking as long as there are few aborts or few distributed transactions that involve multiple rounds of communication. On a modified TPC-C benchmark, speculative concurrency control can improve throughput relative to the other schemes by up to a factor of two.National Science Foundation (U.S.). (Grant number IIS-0704424)National Science Foundation (U.S.). (Grant number IIS-0845643

    Process algebra approach to parallel DBMS performance modelling

    Get PDF
    Abstract unavailable please refer to PD

    Schism: a Workload-Driven Approach to Database Replication and Partitioning

    Get PDF
    We present Schism, a novel workload-aware approach for database partitioning and replication designed to improve scalability of shared-nothing distributed databases. Because distributed transactions are expensive in OLTP settings (a fact we demonstrate through a series of experiments), our partitioner attempts to minimize the number of distributed transactions, while producing balanced partitions. Schism consists of two phases: i) a workload-driven, graph-based replication/partitioning phase and ii) an explanation and validation phase. The first phase creates a graph with a node per tuple (or group of tuples) and edges between nodes accessed by the same transaction, and then uses a graph partitioner to split the graph into k balanced partitions that minimize the number of cross-partition transactions. The second phase exploits machine learning techniques to find a predicate-based explanation of the partitioning strategy (i.e., a set of range predicates that represent the same replication/partitioning scheme produced by the partitioner). The strengths of Schism are: i) independence from the schema layout, ii) effectiveness on n-to-n relations, typical in social network databases, iii) a unified and fine-grained approach to replication and partitioning. We implemented and tested a prototype of Schism on a wide spectrum of test cases, ranging from classical OLTP workloads (e.g., TPC-C and TPC-E), to more complex scenarios derived from social network websites (e.g., Epinions.com), whose schema contains multiple n-to-n relationships, which are known to be hard to partition. Schism consistently outperforms simple partitioning schemes, and in some cases proves superior to the best known manual partitioning, reducing the cost of distributed transactions up to 30%.Quanta Computer (Firm) (T-Party Project
    • …
    corecore