1,540 research outputs found

    Creation and detection of hardware trojans using non-invasive off-the-shelf technologies

    Get PDF
    As a result of the globalisation of the semiconductor design and fabrication processes, integrated circuits are becoming increasingly vulnerable to malicious attacks. The most concerning threats are hardware trojans. A hardware trojan is a malicious inclusion or alteration to the existing design of an integrated circuit, with the possible effects ranging from leakage of sensitive information to the complete destruction of the integrated circuit itself. While the majority of existing detection schemes focus on test-time, they all require expensive methodologies to detect hardware trojans. Off-the-shelf approaches have often been overlooked due to limited hardware resources and detection accuracy. With the advances in technologies and the democratisation of open-source hardware, however, these tools enable the detection of hardware trojans at reduced costs during or after production. In this manuscript, a hardware trojan is created and emulated on a consumer FPGA board. The experiments to detect the trojan in a dormant and active state are made using off-the-shelf technologies taking advantage of different techniques such as Power Analysis Reports, Side Channel Analysis and Thermal Measurements. Furthermore, multiple attempts to detect the trojan are demonstrated and benchmarked. Our simulations result in a state-of-the-art methodology to accurately detect the trojan in both dormant and active states using off-the-shelf hardware

    Using Rapid Prototyping in Computer Architecture Design Laboratories

    Get PDF
    This paper describes the undergraduate computer architecture courses and laboratories introduced at Georgia Tech during the past two years. A core sequence of six required courses for computer engineering students has been developed. In this paper, emphasis is placed upon the new core laboratories which utilize commercial CAD tools, FPGAs, hardware emulators, and a VHDL based rapid prototyping approach to simulate, synthesize, and implement prototype computer hardware

    Hyperbolic position location estimator with TDOAs from four stations

    Get PDF
    This thesis presents a detailed derivation of a set of equations needed to locate the three dimensional position of a mobile given the locations of four fixed stations (like a global positioning system (GPS) satellite or a base station in a cell) and the signal time of arrival (TOA) from the mobile to each station. From these derived equations, a synthesizable VHDL model was developed and simulated using IEEE numen*c_std package. All the inputs and outputs were described by 32 bit vectors. From the simulations, it was observed that in the best case the mobile position was off by I meter and in the worst case the position was off by 36 meters. This model was synthesized with cadence tools and the total number of gates produced was 2.7 million

    Cognitive dimensions usability assessment of textual and visual VHDL environments

    Get PDF
    Visual programming languages promise to make programming easier with simpler graphical methods, broadening access to computing by lessening the need for would-be users to become proficient with textual programming languages, with their somewhat arcane grammars and methods removed from the problem space of the user. However, after more than forty years of research in the field, visual methods remain in the margins of use and programming remains the bailiwick of people devoted to the endeavor. VPL designers need to understand the mechanisms of usability that pertain to complex systems like programming language environments. Effective research tools for studying usability, and sufficiently constrained, mature subjects for investigation are scarce. This study applies a usability research tool, with its origins in applied psychology, to a programming language surrogate from the hardware description language class of notations. The substitution is reasonable because of the great similarity between hardware description languages and programming languages. Considering VHDL (the VHSIC Hardware Description Language) is especially worthwhile for several reasons, but primarily because significant numbers of digital designers regularly employ both textual and visual VHDL environments to meet the same real-world design challenges. A comparative analysis of Cognitive Dimensions assessments of textual and visual VHDL environments should further understanding of the usability issues specifically related to visual methods – in many cases, the same visual methods used in visual programming languages. Furthermore, with this real-world ‘field lab’ better understood, it should be possible to design experiments to pursue the formalization of the CDs framework as a theory

    An Open Core System-on-chip Platform

    Get PDF
    The design cycle required to produce a System-on-Chip can be reduced by providing pre-designed built-in features and functions such as configurable I/O, power and ground grids, block RAMs, timing generators and other embedded intellectual property (IP) blocks. A basic combination of such built-in features is known as a platform. The major objective of this thesis was to design and implement one such System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS process. The integrated System-on-Chip platform, which contains approximately four million transistors, was synthesized using Synopsys - Design Compiler and placed and routed using Cadence - First Encounter, Silicon Ensemble. Design verification was done at the pre-synthesis, post-synthesis and post-layout levels using Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso to perform design rule check. A tutorial was written to enable others to create derivative designs of this platform quickly

    A network processor for a learning based routing protocol

    Get PDF
    Recently, Cognitive Packet Networks (CPN) is proposed as an alternative to the IP based network architectures and shows similarity with the discrete active networks. In CPN, there is no routing table, instead reinforcement learning (Random Neural Networks) is used to route packets. CPN routes packets based on QoS, using measurements that are constantly collected by packets and deposited in mailboxes at routers. The applicability of the CPN concept has been demonstrated through several software implementations. However, higher data traffic and increasing packet processing demands require the implementation of this new network architecture in hardware. In this paper, we present a network processor architecture which supports this learning based protocol. ©2004 IEEE

    Hardware Certification for Real-time Safety-critical Systems: State of the Art

    Get PDF
    This paper discusses issues related to the RTCA document DO-254 Design Assurance Guidance for Airborne Electronic Hardware and its consequences for hardware certification. In particular, problems related to circuits’ compliance with DO-254 in avionics and other industries are considered. Extensive literature review of the subject is given, including current views on and experiences of chip manufacturers and EDA industry with qualification of hardware design tools, including formal approaches to hardware verification. Some results of the authors’ own study on tool qualification are presented

    A two-level approach to automated conformance testing of VHDL designs

    Get PDF
    For manufacturers of consumer electronics, conformance testing of embedded software is a vital issue. To improve performance, parts of this software are implemented in hardware, often designed in the Hardware Description Language VHDL. Conformance testing is a time consuming and error-prone process. Thus automating (parts of) this process is essential. There are many tools for test generation and for VHDL simulation. However, most test generation tools operate on a high level of abstraction and applying the generated tests to a VHDL design is a complicated task. For each specific case one can build a layer of dedicated circuitry and/or software that performs this task. It appears that the ad-hoc nature of this layer forms the bottleneck of the testing process. We propose a {em generic solution for bridging this gap: a generic layer of software dedicated to interface with VHDL implementations. It consists of a number of Von Neumann-like components that can be instantiated for each specific VHDL design. This paper reports on the construction of and some initial experiences with a concrete tool environment based on these principles
    • …
    corecore