8,977 research outputs found

    Generalized Direct Sampling for Hierarchical Bayesian Models

    Full text link
    We develop a new method to sample from posterior distributions in hierarchical models without using Markov chain Monte Carlo. This method, which is a variant of importance sampling ideas, is generally applicable to high-dimensional models involving large data sets. Samples are independent, so they can be collected in parallel, and we do not need to be concerned with issues like chain convergence and autocorrelation. Additionally, the method can be used to compute marginal likelihoods

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process

    Static Pricing Problems under Mixed Multinomial Logit Demand

    Full text link
    Price differentiation is a common strategy for many transport operators. In this paper, we study a static multiproduct price optimization problem with demand given by a continuous mixed multinomial logit model. To solve this new problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a linear optimization (LO) problem is formulated, based on the trust-region approach, to find a "good" feasible solution and approximate the problem from below. Another LO problem is designed using piecewise linear relaxations to approximate the optimization problem from above. Then, we develop a new branching method to tighten the optimality gap. Numerical experiments show the effectiveness of our method on a published, non-trivial, parking choice model
    • …
    corecore