2,708 research outputs found

    DISCUS - The Deep Interior Scanning CubeSat mission to a rubble pile near-Earth asteroid

    Full text link
    We have performed an initial stage conceptual design study for the Deep Interior Scanning CubeSat (DISCUS), a tandem 6U CubeSat carrying a bistatic radar as main payload. DISCUS will be operated either as an independent mission or accompanying a larger one. It is designed to determine the internal macroporosity of a 260-600 m diameter Near Earth Asteroid (NEA) from a few kilometers distance. The main goal will be to achieve a global penetration with a low-frequency signal as well as to analyze the scattering strength for various different penetration depths and measurement positions. Moreover, the measurements will be inverted through a computed radar tomography (CRT) approach. The scientific data provided by DISCUS would bring more knowledge of the internal configuration of rubble pile asteroids and their collisional evolution in the Solar System. It would also advance the design of future asteroid deflection concepts. We aim at a single-unit (1U) radar design equipped with a half-wavelength dipole antenna. The radar will utilize a stepped-frequency modulation technique the baseline of which was developed for ESA's technology projects GINGER and PIRA. The radar measurements will be used for CRT and shape reconstruction. The CubeSat will also be equipped with an optical camera system and laser altimeter to sup- port navigation and shape reconstruction. We provide the details of the measurement methods to be applied along with the requirements derived of the known characteristics of rubble pile asteroids.Comment: Submitted to Advances in Space Researc

    Optical communication on CubeSats - Enabling the next era in space science

    Full text link
    CubeSats are excellent platforms to rapidly perform simple space experiments. Several hundreds of CubeSats have already been successfully launched in the past few years and the number of announced launches grows every year. These platforms provide an easy access to space for universities and organizations which otherwise could not afford it. However, these spacecraft still rely on RF communications, where the spectrum is already crowded and cannot support the growing demand for data transmission to the ground. Lasercom holds the promise to be the solution to this problem, with a potential improvement of several orders of magnitude in the transmission capacity, while keeping a low size, weight and power. Between 2016 and 2017, The Keck Institute for Space Studies (KISS), a joint institute of the California Institute of Technology and the Jet Propulsion Laboratory, brought together a group of space scientists and lasercom engineers to address the current challenges that this technology faces, in order to enable it to compete with RF and eventually replace it when high-data rate is needed. After two one-week workshops, the working group started developing a report addressing three study cases: low Earth orbit, crosslinks and deep space. This paper presents the main points and conclusions of these KISS workshops.Comment: 7 pages, 5 figures, 2 tables, Official Final Report of KISS (Keck Institute for Space Studies) workshop on "Optical communication on CubeSats" (http://kiss.caltech.edu/workshops/optcomm/optcomm.html

    Small Satellite Industrial Base Study: Foundational Findings

    Get PDF
    This report documents findings from a Small Satellite (SmallSat) Industrial Base Study conducted by The Aerospace Corporation between November 2018 and September 2019. The primary objectives of this study were a) to gain a better understanding of the SmallSat communitys technical practices, engineering approaches, requirements flow-downs, and common processes and b) identify insights and recommendations for how the government can further capitalize on the strengths and capabilities of SmallSat offerings. In the context of this study, SmallSats are understood to weigh no more than 500 kg, as described in State of the Art Small Spacecraft Technology, NASA/TP-2018- 220027, December 2018. CubeSats were excluded from this study to avoid overlap and duplication of recently completed work or other studies already under way. The team also touched on differences between traditional space-grade and the emerging mid-grade and other non-space, alternate-grade EEEE (electrical, electronic, electromechanical, electro-optical) piece part categories. Finally, the participants sought to understand the potential effects of increased use of alternate-grade parts on the traditional space-grade industrial base. The study team was keenly aware that there are missions for which non-space grade parts currently are infeasible for the foreseeable future. National security, long-duration and high-reliability missions intolerant of risk are a few examples. The team sought to identify benefits of alternative parts and approaches that can be harnessed by the government to achieve greater efficiencies and capabilities without impacting mission success

    NASAs Space Launch System: Launch Capability for Lunar Exploration and Transformative Science

    Get PDF
    Excitement is building for the first launch of NASAs Space Launch System (SLS), a unique exploration asset for the agencys Artemis lunar program as well as for a new generation of science missions. SLS is designed for an array of missions beyond Earths orbit. The flexible system, which can be configured for Orion, cargo or Orion with co-manifested payload missions, offers high escape velocities to send more mass to deep space destinations. When configured with an 8.4 m-diameter fairing, SLS offers unmatched payload volume for human exploration and science missions. The initial Block 1 variant will insert at least 26 metric tons (t) to trans-lunar injection (TLI) and the more powerful Block 1B vehicle will launch 34-37 t to TLI using a new-development upper stage. Much of the initial SLS Block 1 vehicle is complete, including the upper stage and payload section, the core stage, engines and the solid rocket boosters. The first mission, Artemis I, launching from modernized and upgraded facilities at Kennedy Space Center (KSC), will be an uncrewed test flight of SLS, Orion and ground processing, with a primary objective of testing Orions heat shield at lunar re-entry velocity. Artemis I will have accommodations for 13 6U CubeSat payloads. These CubeSat missions will be deployed along the upper stage disposal trajectory after Orion separates from the vehicle. A rare opportunity for CubeSats to be deployed beyond low Earth orbit (LEO), Artemis I CubeSat missions range from searching for hydrogen and other volatiles on the lunar South Pole to studying the acceleration mechanisms of solar and interplanetary particles from a heliocentric trajectory. With manufacturing of the initial vehicle complete, fabrication and procurement is progressing for the second flight of SLS and Orion, Artemis II. Also an SLS Block 1 and Orion flight launching from KSC, Artemis II will mark the return of American astronauts to deep space with a lunar flyby-free return trajectory mission. With the Artemis III flight, NASA has the goal to land the first woman and the next man on the Moon. Infrastructure beyond SLS will be required for this effort, including elements of the lunar Gateway as well as lunar rovers, landers and additional commercially supplied launch services. SLS, as the only vehicle with the capability to lift 26 t of mass to TLI in its initial Block 1 variant, will remain a key component of this new-era exploration program. Future variants Block 1B and Block 2 will lift 34-45 t to TLI. This paper will discuss the status of testing and integration for the Artemis I vehicle, manufacturing progress for the second vehicle and the manifest outlook for primary, co-manifested and secondary payloads in the current deep space exploration environment

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    Design, Development, Test, and Evaluation of Atmosphere Revitalization and Environmental Monitoring Systems for Long Duration Missions

    Get PDF
    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures. It is the project's objective to enable exploration beyond Lower Earth Orbit (LEO) and improve affordability by focusing on three primary goals: 1) achieving high reliability, 2) reducing dependence on a ground-based logistics resupply model, and 3) maximizing commonality between atmosphere revitalization subsystem components and those needed to support other exploration elements. The ARREM project's strengths include using existing developmental hardware and testing facilities, when possible, and and a well-coordinated effort among the NASA field centers that contributed to past ARS and EMS technology development projects

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table
    • …
    corecore