3,997 research outputs found

    Development and flight evaluation of active controls in the L-1011

    Get PDF
    Active controls in the Lockheed L-1011 for increased energy efficiency are discussed. Active wing load alleviation for extended span, increased aspect ratio, and active stability augmentation with a smaller tail for reduced drag and weight are among the topics considered. Flight tests of active wing load alleviation on the baseline aircraft and moving-base piloted simulation developing criteria for stability augmentation are described

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    A simulation evaluation of a four-engine jet transport using engine thrust modulation for flightpath control

    Get PDF
    The use of throttle control laws to provide adequate flying qualities for flight path control in the event of a total loss of conventional flight control surface use was evaluated. The results are based on a simulation evaluation by transport research pilots of a B-720 transport with visual display. Throttle augmentation control laws can provide flight path control capable of landing a transport-type aircraft with up to moderate levels of turbulence. The throttle augmentation mode dramatically improves the pilots' ability to control flight path for the approach and landing flight condition using only throttle modulation. For light turbulence, the average Cooper-Harper pilot rating improved from unacceptable to acceptable (a pilot rating improvement of 4.5) in going from manual to augmented control. The low frequency response characteristics of the engines require a considerably different piloting technique. The various techniques used by the pilot resulted in considerable scatter in data. Many pilots readily adapted to a good piloting technique while some had difficulty. A new viable approach is shown to provide independent means of redundancy of transport aircraft flight path control

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Commentary on The recession of 2001 and unemployment insurance financing

    Get PDF
    Proceedings of a Conference Cosponsored by the Canadian Consulate General in New York, the Centre for the Study of Living Standards, the Federal Reserve Bank of New York, and the New York Association for Business Economics.Unemployment insurance ; Recessions ; Labor market

    Approach path control for powered-lift STOL aircraft

    Get PDF
    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included

    Income support systems for the unemployed : issues and options

    Get PDF
    The report reviews the performance of various income support systems for the unemployed, and provides guidelines for developing and transition economies. It finds that: a) Unemployment insurance enables a high degree of consumption smoothing, performs well under various types of shocks, and acts as an automatic stabilizer. But it also creates reemployment disincentives, and wage pressure which increase the equilibrium unemployment rate, contributing to persistent unemployment. b) Unemployment assistance, while enabling more effective targeting, may not bring savings in comparison to unemployment insurance, and may well prove fiscally unsustainable. c) Unemployment insurance savings accounts, internalize the costs of unemployment benefits, and thus avoid the moral hazard inherent in traditional unemployment insurance, given the weak monitoring capacity of developing countries, an important advantage. d) Public works program is effective in reaching the poor, can attract informal sector workers, and provides flexible, fast responses to shocks. Despite its high non-wage costs, and possible stigmatization of participants, it is found suitable for developing countries, particularly as a complementary program. e) Severance pay offers few advantages - it adversely affects efficiency, produces high litigation costs, and offers limited risk-pooling.Environmental Economics&Policies,Rural Poverty Reduction,Safety Nets and Transfers,Services&Transfers to Poor,Health Economics&Finance

    Quantitative Control Approach for Wind Turbine Generators to Provide Fast Frequency Response with Guarantee of Rotor Security

    Full text link
    Wind generation is expected to reach substantially higher levels of penetration in the near future. With the converter interface, the rotor inertia of doubly-fed induction generator (DFIG) based wind turbine generator is effectively decoupled from the system, causing a reduction in inertial response. This can be compensated by enabling the DFIG to provide fast frequency response. This paper proposes a quantitative control approach for DFIG to deliver fast frequency response in the inertial response time scale. A supplementary power surge function is added to the active power reference of DFIG. The exact amount of power surge that is available from DFIG-based wind turbine is quantified based on estimation of maximum extractable energy. Moreover, the operational constraints such as rotor limits and converter over-load limit are considered at the same time. Thus, the proposed approach not only provides adequate inertial response but also ensures the rotor speed is kept within a specified operating range. Rotor safety is guaranteed without the need for an additional rotor speed protection scheme.Comment: 5 page
    corecore