10,390 research outputs found

    Rethinking Routing and Peering in the era of Vertical Integration of Network Functions

    Get PDF
    Content providers typically control the digital content consumption services and are getting the most revenue by implementing an all-you-can-eat model via subscription or hyper-targeted advertisements. Revamping the existing Internet architecture and design, a vertical integration where a content provider and access ISP will act as unibody in a sugarcane form seems to be the recent trend. As this vertical integration trend is emerging in the ISP market, it is questionable if existing routing architecture will suffice in terms of sustainable economics, peering, and scalability. It is expected that the current routing will need careful modifications and smart innovations to ensure effective and reliable end-to-end packet delivery. This involves new feature developments for handling traffic with reduced latency to tackle routing scalability issues in a more secure way and to offer new services at cheaper costs. Considering the fact that prices of DRAM or TCAM in legacy routers are not necessarily decreasing at the desired pace, cloud computing can be a great solution to manage the increasing computation and memory complexity of routing functions in a centralized manner with optimized expenses. Focusing on the attributes associated with existing routing cost models and by exploring a hybrid approach to SDN, we also compare recent trends in cloud pricing (for both storage and service) to evaluate whether it would be economically beneficial to integrate cloud services with legacy routing for improved cost-efficiency. In terms of peering, using the US as a case study, we show the overlaps between access ISPs and content providers to explore the viability of a future in terms of peering between the new emerging content-dominated sugarcane ISPs and the healthiness of Internet economics. To this end, we introduce meta-peering, a term that encompasses automation efforts related to peering – from identifying a list of ISPs likely to peer, to injecting control-plane rules, to continuous monitoring and notifying any violation – one of the many outcroppings of vertical integration procedure which could be offered to the ISPs as a standalone service

    Peer-assisted Information-Centric Network (PICN): A Backward Compatible Solution

    Get PDF
    International audienceInformation-Centric Networking (ICN) is a promising solution for most of Internet applications where the content represents the core of the application. However, the proposed solutions for the ICN architecture are associated with many complexities including pervasive caching in the Internet and incompatibility with legacy IP networks, so the deployment of ICN in real networks is still an open problem. In this paper, we propose a backward compatible ICN architecture to address the caching issue in particular. The key idea is implementing edge caching in ICN, using a coalition of end clients and edge servers. Our solution can be deployed in IP networks with HTTP requests. We performed a trace-driven simulation for analyzing PICN benefits using IRCache and Berkeley trace files. The results show that in average, PICN decreases the latency for 78% and increases the content retrieval speed for 69% compared to a direct download from the original web servers. When comparing PICN with a solution based on central proxy servers, we show that the hit ratio obtained using a small cache size in each PICN client is almost 14% higher than the hit ratio obtained with a central proxy server using an unlimited cache storage

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor
    corecore