32 research outputs found

    Expectation Maximization and Posterior Constraints

    Get PDF
    The expectation maximization (EM) algorithm is a widely used maximum likelihood estimation procedure for statistical models when the values of some of the variables in the model are not observed. Very often, however, our aim is primarily to find a model that assigns values to the latent variables that have intended meaning for our data and maximizing expected likelihood only sometimes accomplishes this. Unfortunately, it is typically difficult to add even simple a-priori information about latent variables in graphical models without making the models overly complex or intractable. In this paper, we present an efficient, principled way to inject rich constraints on the posteriors of latent variables into the EM algorithm. Our method can be used to learn tractable graphical models that satisfy additional, otherwise intractable constraints. Focusing on clustering and the alignment problem for statistical machine translation, we show that simple, intuitive posterior constraints can greatly improve the performance over standard baselines and be competitive with more complex, intractable models

    Distribution matching for transduction

    Get PDF
    Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match. This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space. It turns out that a number of existing heuristics can be viewed as special cases of our approach.

    Multi-word expression-sensitive word alignment

    Get PDF
    This paper presents a new word alignment method which incorporates knowledge about Bilingual Multi-Word Expressions (BMWEs). Our method of word alignment first extracts such BMWEs in a bidirectional way for a given corpus and then starts conventional word alignment, considering the properties of BMWEs in their grouping as well as their alignment links. We give partial annotation of alignment links as prior knowledge to the word alignment process; by replacing the maximum likelihood estimate in the M-step of the IBM Models with the Maximum A Posteriori (MAP) estimate, prior knowledge about BMWEs is embedded in the prior in this MAP estimate. In our experiments, we saw an improvement of 0.77 Bleu points absolute in JP–EN. Except for one case, our method gave better results than the method using only BMWEs grouping. Even though this paper does not directly address the issues in Cross-Lingual Information Retrieval (CLIR), it discusses an approach of direct relevance to the field. This approach could be viewed as the opposite of current trends in CLIR on semantic space that incorporate a notion of order in the bag-of-words model (e.g. co-occurences)

    Extension of TSVM to Multi-Class and Hierarchical Text Classification Problems With General Losses

    Full text link
    Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods
    corecore