537 research outputs found

    Improved Nearly-MDS Expander Codes

    Full text link
    A construction of expander codes is presented with the following three properties: (i) the codes lie close to the Singleton bound, (ii) they can be encoded in time complexity that is linear in their code length, and (iii) they have a linear-time bounded-distance decoder. By using a version of the decoder that corrects also erasures, the codes can replace MDS outer codes in concatenated constructions, thus resulting in linear-time encodable and decodable codes that approach the Zyablov bound or the capacity of memoryless channels. The presented construction improves on an earlier result by Guruswami and Indyk in that any rate and relative minimum distance that lies below the Singleton bound is attainable for a significantly smaller alphabet size.Comment: Part of this work was presented at the 2004 IEEE Int'l Symposium on Information Theory (ISIT'2004), Chicago, Illinois (June 2004). This work was submitted to IEEE Transactions on Information Theory on January 21, 2005. To appear in IEEE Transactions on Information Theory, August 2006. 12 page
    • …
    corecore