9,963 research outputs found

    Chiral CP^2 skyrmions in three-band superconductors

    Full text link
    It is shown that under certain conditions, three-component superconductors (and in particular three-band systems) allow stable topological defects different from vortices. We demonstrate the existence of these excitations, characterized by a CP2CP^2 topological invariant, in models for three-component superconductors with broken time reversal symmetry. We term these topological defects "chiral GL(3)GL^{(3)} skyrmions", where "chiral" refers to the fact that due to broken time reversal symmetry, these defects come in inequivalent left- and right-handed versions. In certain cases these objects are energetically cheaper than vortices and should be induced by an applied magnetic field. In other situations these skyrmions are metastable states, which can be produced by a quench. Observation of these defects can signal broken time reversal symmetry in three-band superconductors or in Josephson-coupled bilayers of s±s_\pm and s-wave superconductors.Comment: minor presentation changes; replaced journal version; 30 pages, 21 figure

    Topological superconducting phases from inversion symmetry breaking order in spin-orbit-coupled systems

    Full text link
    We analyze the superconducting instabilities in the vicinity of the quantum-critical point of an inversion symmetry breaking order. We first show that the fluctuations of the inversion symmetry breaking order lead to two degenerate superconducting (SC) instabilities, one in the ss-wave channel, and the other in a time-reversal invariant odd-parity pairing channel (the simplest case being the same as the of 3^3He-B phase). Remarkably, we find that unlike many well-known examples, the selection of the pairing symmetry of the condensate is independent of the momentum-space structure of the collective mode that mediates the pairing interaction. We found that this degeneracy is a result of the existence of a conserved fermionic helicity, χ\chi, and the two degenerate channels correspond to even and odd combinations of SC order parameters with χ=±1\chi=\pm1. As a result, the system has an enlarged symmetry U(1)×U(1)U(1)\times U(1), with each U(1)×U(1)U(1)\times U(1) corresponding to one value of the helicity χ\chi. Because of the enlarged symmetry, this system admits exotic topological defects such as a fractional quantum vortex, which we show has a Majorana zero mode bound at its core. We discuss how the enlarged symmetry can be lifted by small perturbations, such as the Coulomb interaction or Fermi surface splitting in the presence of broken inversion symmetry, and we show that the resulting superconducting state can be topological or trivial depending on parameters. The U(1)×U(1)U(1)\times U(1) symmetry is restored at the phase boundary between the topological and trivial SC states, and allows for a transition between topologically distinct SC phases without the vanishing of the order parameter. We present a global phase diagram of the superconducting states and discuss possible experimental implications.Comment: 14 pages, 5 figures, to match the published versio

    Review of Some Promising Fractional Physical Models

    Full text link
    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law non-locality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods of the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of non-integer order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.Comment: 38 pages, LaTe

    Diffusive approximation of a time-fractional Burger's equation in nonlinear acoustics

    Get PDF
    A fractional time derivative is introduced into the Burger's equation to model losses of nonlinear waves. This term amounts to a time convolution product, which greatly penalizes the numerical modeling. A diffusive representation of the fractional derivative is adopted here, replacing this nonlocal operator by a continuum of memory variables that satisfy local-in-time ordinary differential equations. Then a quadrature formula yields a system of local partial differential equations, well-suited to numerical integration. The determination of the quadrature coefficients is crucial to ensure both the well-posedness of the system and the computational efficiency of the diffusive approximation. For this purpose, optimization with constraint is shown to be a very efficient strategy. Strang splitting is used to solve successively the hyperbolic part by a shock-capturing scheme, and the diffusive part exactly. Numerical experiments are proposed to assess the efficiency of the numerical modeling, and to illustrate the effect of the fractional attenuation on the wave propagation.Comment: submitted to Siam SIA

    Analysis of fractional hybrid differential equations with impulses in partially ordered Banach algebras

    Get PDF
    In this paper, we investigate a class of fractional hybrid differential equations with impulses, which can be seen as nonlinear differential equations with a quadratic perturbation of second type and a linear perturbation in partially ordered Banach algebras. We deduce the existence and approximation of a mild solution for the initial value problems of this system by applying Dhage iteration principles and related hybrid fixed point theorems. Compared with previous works, we generalize the results to fractional order and extend some existing conclusions for the first time. Meantime, we take into consideration the effect of impulses. Our results indicate the influence of fractional order for nonlinear hybrid differential equations and improve some known results, which have wider applications as well. A numerical example is included to illustrate the effectiveness of the proposed results

    Action principles for higher and fractional spin gravities

    Full text link
    We review various off-shell formulations for interacting higher-spin systems in dimensions 3 and 4. Associated with higher-spin systems in spacetime dimension 4 is a Chern-Simons action for a superconnection taking its values in a direct product of an infinite-dimensional algebra of oscillators and a Frobenius algebra. A crucial ingredient of the model is that it elevates the rigid closed and central two-form of Vasiliev's theory to a dynamical 2-form and doubles the higher-spin algebra, thereby considerably reducing the number of possible higher spin invariants and giving a nonzero effective functional on-shell. The two action principles we give for higher-spin systems in 3D are based on Chern-Simons and BF models. In the first case, the theory we give unifies higher-spin gauge fields with fractional-spin fields and an internal sector. In particular, Newton's constant is related to the coupling constant of the internal sector. In the second case, the BF action we review gives the fully nonlinear Prokushkin-Vasiliev, bosonic equations for matter-coupled higher spins in 3D. We present the truncation to a single, real matter field relevant in the Gaberdiel-Gopakumar holographic duality. The link between the various actions we present is the fact that they all borrow ingredients from Topological Field Theory. It has bee conjectured that there is an underlying and unifying 2-dimensional first-quantised description of the previous higher-spin models in 3D and 4D, in the form of a Cattaneo-Felder-like topological action containing fermionic fields.Comment: 41+1 pages. References added and reorganized, corrected typos, last paragraph of section 2 re-written. Contribution to the proceedings of the International Workshop on Higher Spin Gauge Theories (4-6 November 2015, Singapore
    corecore