17,225 research outputs found

    A categorical characterization of relative entropy on standard Borel spaces

    Get PDF
    We give a categorical treatment, in the spirit of Baez and Fritz, of relative entropy for probability distributions defined on standard Borel spaces. We define a category suitable for reasoning about statistical inference on standard Borel spaces. We define relative entropy as a functor into Lawvere's category and we show convexity, lower semicontinuity and uniqueness.Comment: 16 page

    Local proper scoring rules of order two

    Full text link
    Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if it encourages truthful reporting. It is local of order kk if the score depends on the predictive density only through its value and the values of its derivatives of order up to kk at the realizing event. Complementing fundamental recent work by Parry, Dawid and Lauritzen, we characterize the local proper scoring rules of order 2 relative to a broad class of Lebesgue densities on the real line, using a different approach. In a data example, we use local and nonlocal proper scoring rules to assess statistically postprocessed ensemble weather forecasts.Comment: Published in at http://dx.doi.org/10.1214/12-AOS973 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Linear Estimating Equations for Exponential Families with Application to Gaussian Linear Concentration Models

    Full text link
    In many families of distributions, maximum likelihood estimation is intractable because the normalization constant for the density which enters into the likelihood function is not easily available. The score matching estimator of Hyv\"arinen (2005) provides an alternative where this normalization constant is not required. The corresponding estimating equations become linear for an exponential family. The score matching estimator is shown to be consistent and asymptotically normally distributed for such models, although not necessarily efficient. Gaussian linear concentration models are examples of such families. For linear concentration models that are also linear in the covariance we show that the score matching estimator is identical to the maximum likelihood estimator, hence in such cases it is also efficient. Gaussian graphical models and graphical models with symmetries form particularly interesting subclasses of linear concentration models and we investigate the potential use of the score matching estimator for this case

    New multicategory boosting algorithms based on multicategory Fisher-consistent losses

    Get PDF
    Fisher-consistent loss functions play a fundamental role in the construction of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multicategory classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we derive two new multicategory boosting algorithms by using the exponential and logistic regression losses.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS198 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore