8,111 research outputs found

    Stationary States and Asymptotic Behaviour of Aggregation Models with Nonlinear Local Repulsion

    Full text link
    We consider a continuum aggregation model with nonlinear local repulsion given by a degenerate power-law diffusion with general exponent. The steady states and their properties in one dimension are studied both analytically and numerically, suggesting that the quadratic diffusion is a critical case. The focus is on finite-size, monotone and compactly supported equilibria. We also investigate numerically the long time asymptotics of the model by simulations of the evolution equation. Issues such as metastability and local/ global stability are studied in connection to the gradient flow formulation of the model

    Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics

    Full text link
    We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as t→∞t\to\infty

    Coexistence of stable limit cycles in a generalized Curie-Weiss model with dissipation

    Full text link
    In this paper, we modify the Langevin dynamics associated to the generalized Curie-Weiss model by introducing noisy and dissipative evolution in the interaction potential. We show that, when a zero-mean Gaussian is taken as single-site distribution, the dynamics in the thermodynamic limit can be described by a finite set of ODEs. Depending on the form of the interaction function, the system can have several phase transitions at different critical temperatures. Because of the dissipation effect, not only the magnetization of the systems displays a self-sustained periodic behavior at sufficiently low temperature, but, in certain regimes, any (finite) number of stable limit cycles can exist. We explore some of these peculiarities with explicit examples
    • …
    corecore