162 research outputs found

    Laws of Little in an open queueing network

    Get PDF
    The object of this research in the queueing theory is theorems about the functional strong laws of large numbers (FSLLN) under the conditions of heavy traffic in an open queueing network (OQN). The FSLLN is known as a fluid limit or fluid approximation. In this paper, FSLLN are proved for the values of important probabilistic characteristics of the OQN investigated as well as the virtual waiting time of a customer and the queue length of customers. As applications of the proved theorems laws of Little in OQN are presented

    Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime. Asymptotics of the stationary distribution

    Get PDF
    We consider a heterogeneous queueing system consisting of one large pool of O(r)O(r) identical servers, where rr\to\infty is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin-Whitt sense, namely the nominal utilization is 1a/r1-a/\sqrt{r} where a>0a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Qr()Q^r(\infty). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r)O(\sqrt{r}) on both Qr()Q^r(\infty) and the number of idle servers. The bounds are uniform w.r.t. parameter rr and the service policy. In particular, we show that lim suprEexp(θr1/2Qr())<\limsup_r E \exp(\theta r^{-1/2}Q^r(\infty))<\infty. Therefore, the sequence r1/2Qr()r^{-1/2}Q^r(\infty) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit Q^()\hat{Q}(\infty) of r1/2Qr()r^{-1/2}Q^r(\infty) has a sub-Gaussian tail. Namely E[exp(θ(Q^())2)]0E[\exp(\theta (\hat{Q}(\infty))^2)]0.Comment: 21 page

    A Hierarchical Approach to Robust Stability of Multiclass Queueing Networks

    Full text link
    We re-visit the global - relative to control policies - stability of multiclass queueing networks. In these, as is known, it is generally insufficient that the nominal utilization at each server is below 100%. Certain policies, although work conserving, may destabilize a network that satisfies the nominal load conditions; additional conditions on the primitives are needed for global stability. The global-stability region was fully characterized for two-station networks in [13], but a general framework for networks with more than two stations remains elusive. In this paper, we offer progress on this front by considering a subset of non-idling control policies, namely queue-ratio (QR) policies. These include as special cases also all static-priority policies. With this restriction, we are able to introduce a complete framework that applies to networks of any size. Our framework breaks the analysis of QR-global stability into (i) global state-space collapse and (ii) global stability of the Skorohod problem (SP) representing the fluid workload. Sufficient conditions for both are specified in terms of simple optimization problems. We use these optimization problems to prove that the family of QR policies satisfies a weak form of convexity relative to policies. A direct implication of this convexity is that: if the SP is stable for all static-priority policies (the "extreme" QR policies), then it is also stable under any QR policy. While QR-global stability is weaker than global stability, our framework recovers necessary and sufficient conditions for global stability in specific networks

    Sample path large deviations for multiclass feedforward queueing networks in critical loading

    Full text link
    We consider multiclass feedforward queueing networks with first in first out and priority service disciplines at the nodes, and class dependent deterministic routing between nodes. The random behavior of the network is constructed from cumulative arrival and service time processes which are assumed to satisfy an appropriate sample path large deviation principle. We establish logarithmic asymptotics of large deviations for waiting time, idle time, queue length, departure and sojourn-time processes in critical loading. This transfers similar results from Puhalskii about single class queueing networks with feedback to multiclass feedforward queueing networks, and complements diffusion approximation results from Peterson. An example with renewal inter arrival and service time processes yields the rate function of a reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The BAR approach for multiclass queueing networks with SBP service policies

    Full text link
    The basic adjoint relationship (BAR) approach is an analysis technique based on the stationary equation of a Markov process. This approach was introduced to study heavy-traffic, steady-state convergence of generalized Jackson networks in which each service station has a single job class. We extend it to multiclass queueing networks operating under static-buffer-priority (SBP) service disciplines. Our extension makes a connection with Palm distributions that allows one to attack a difficulty arising from queue-length truncation, which appears to be unavoidable in the multiclass setting. For multiclass queueing networks operating under SBP service disciplines, our BAR approach provides an alternative to the "interchange of limits" approach that has dominated the literature in the last twenty years. The BAR approach can produce sharp results and allows one to establish steady-state convergence under three additional conditions: stability, state space collapse (SSC) and a certain matrix being "tight." These three conditions do not appear to depend on the interarrival and service-time distributions beyond their means, and their verification can be studied as three separate modules. In particular, they can be studied in a simpler, continuous-time Markov chain setting when all distributions are exponential. As an example, these three conditions are shown to hold in reentrant lines operating under last-buffer-first-serve discipline. In a two-station, five-class reentrant line, under the heavy-traffic condition, the tight-matrix condition implies both the stability condition and the SSC condition. Whether such a relationship holds generally is an open problem
    corecore